論文の概要: Sketched Equivariant Imaging Regularization and Deep Internal Learning for Inverse Problems
- arxiv url: http://arxiv.org/abs/2411.05771v3
- Date: Wed, 12 Feb 2025 17:43:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-13 13:46:26.485829
- Title: Sketched Equivariant Imaging Regularization and Deep Internal Learning for Inverse Problems
- Title(参考訳): 逆問題に対するSketched Equivariant Imaging RegularizationとDeep Internal Learning
- Authors: Guixian Xu, Jinglai Li, Junqi Tang,
- Abstract要約: 等変イメージング(EI)正則化は、ディープイメージングネットワークの教師なしトレーニングにおけるデファクト技術となっている。
本稿では,ランダムなスケッチ手法を応用したスケッチ付きEI正規化手法を提案する。
次に、スケッチしたEI正規化を拡張して、高速化された深層学習フレームワークを開発する。
- 参考スコア(独自算出の注目度): 4.287621751502392
- License:
- Abstract: Equivariant Imaging (EI) regularization has become the de-facto technique for unsupervised training of deep imaging networks, without any need of ground-truth data. Observing that the EI-based unsupervised training paradigm currently has significant computational redundancy leading to inefficiency in high-dimensional applications, we propose a sketched EI regularization which leverages the randomized sketching techniques for acceleration. We then extend our sketched EI regularization to develop an accelerated deep internal learning framework, Sketched Equivariant Deep Image Prior (Sk-EI-DIP), which can be efficiently applied for single-image and task-adapted reconstruction. Additionally, for network adaptation tasks, we propose a parameter-efficient approach for accelerating both EI-DIP and Sk-EI-DIP via optimizing only the normalization layers. Our numerical study on X-ray CT and multi-coil MRI image reconstruction tasks demonstrate that our approach can achieve significant computational acceleration over standard EI-based counterpart in single-input setting and network adaptation at test time.
- Abstract(参考訳): 等変イメージング(EI)正則化は、地上データを必要としないディープイメージングネットワークの教師なしトレーニングのデファクト技術となっている。
EIをベースとした教師なしトレーニングのパラダイムが、高次元アプリケーションにおいて非効率な計算冗長性を持つのを観察し、ランダム化されたスケッチ技術を利用したスケッチ付きEI正規化を提案する。
次に、スケッチしたEI正規化を拡張し、高速な深層学習フレームワークであるSketched Equivariant Deep Image Prior (Sk-EI-DIP)を開発した。
さらに,ネットワーク適応タスクにおいて,正規化層のみを最適化することで,EI-DIPとSk-EI-DIPの両方を高速化するパラメータ効率の手法を提案する。
X線CTおよびマルチコイルMRI画像再構成タスクの数値的研究により,テスト時のシングルインプット設定とネットワーク適応において,標準的なEIベースに比べて計算速度が大幅に向上できることが示されている。
関連論文リスト
- Component-based Sketching for Deep ReLU Nets [55.404661149594375]
各種タスクのためのディープネットコンポーネントに基づくスケッチ手法を開発した。
我々はディープネットトレーニングを線形経験的リスク最小化問題に変換する。
提案したコンポーネントベーススケッチは飽和関数の近似においてほぼ最適であることを示す。
論文 参考訳(メタデータ) (2024-09-21T15:30:43Z) - Analysis of Deep Image Prior and Exploiting Self-Guidance for Image
Reconstruction [13.277067849874756]
DIPがアンダーサンプドイメージング計測からどのように情報を回収するかを検討する。
ネットワーク重みと入力の両方を同時に最適化する自己駆動型再構築プロセスを導入する。
提案手法は,ネットワーク入力画像と再構成画像の両方の堅牢かつ安定した関節推定を可能にする,新しいデノイザ正規化項を組み込んだものである。
論文 参考訳(メタデータ) (2024-02-06T15:52:23Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
画像超解像(SR)は、CNNからトランスフォーマーアーキテクチャへの広範なニューラルネットワーク設計を目撃している。
本研究は,市販のネットワーク設計を生かし,基礎となる計算オーバーヘッドを低減するため,超高解像度イテレーションにおけるネットワークプルーニングの可能性について検討する。
本研究では, ランダムネットワークのスパース構造を最適化し, 重要でない重みを小さめに微調整することにより, 反復型軟収縮率(ISS-P)法を提案する。
論文 参考訳(メタデータ) (2023-03-16T21:06:13Z) - Practical Operator Sketching Framework for Accelerating Iterative Data-Driven Solutions in Inverse Problems [13.337452518482717]
本稿では,効率的な反復型データ駆動型再構成手法のための演算子・スケッチパラダイムを提案する。
これらのIDRスキームは現在、逆問題の画像化のための最先端のソリューションである。
論文 参考訳(メタデータ) (2022-08-31T11:45:21Z) - A Fast Alternating Minimization Algorithm for Coded Aperture Snapshot
Spectral Imaging Based on Sparsity and Deep Image Priors [8.890754092562918]
Coded Aperture snapshot Spectrum Imaging (CASSI)は、3次元ハイパースペクトル画像(HSI)を再構成する技術である。
本稿では,自然画像の空間と深部画像の先行値(Fama-P)に基づいて,高速な変動最小化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-06-12T03:29:14Z) - Deep Image Prior using Stein's Unbiased Risk Estimator: SURE-DIP [31.408877556706376]
超高解像度イメージングを含む多くのイメージングアプリケーションでは、トレーニングデータが不足している。
シングルショット画像回復のためのディープ画像先行アルゴリズム(DIP)が導入され、トレーニングデータの必要性を完全に排除した。
オーバーフィッティングを最小限に抑えるため,一般化されたStein's Unbiased Risk Estimation (GSURE)損失指標を導入する。
論文 参考訳(メタデータ) (2021-11-21T20:11:56Z) - Image-specific Convolutional Kernel Modulation for Single Image
Super-resolution [85.09413241502209]
本稿では,新しい画像特異的畳み込み変調カーネル(IKM)を提案する。
我々は、画像や特徴のグローバルな文脈情報を利用して、畳み込みカーネルを適応的に調整するための注意重みを生成する。
単一画像超解像実験により,提案手法は最先端手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2021-11-16T11:05:10Z) - Unsupervised Monocular Depth Learning with Integrated Intrinsics and
Spatio-Temporal Constraints [61.46323213702369]
本研究は,大規模深度マップとエゴモーションを予測可能な教師なし学習フレームワークを提案する。
本結果は,KITTI運転データセットの複数シーケンスにおける現在の最先端技術と比較して,高い性能を示す。
論文 参考訳(メタデータ) (2020-11-02T22:26:58Z) - Using Deep Image Priors to Generate Counterfactual Explanations [38.62513524757573]
ディープ画像先行(DIP)は、潜在表現エンコーディングからプレイメージを得るために用いられる。
本稿では,予測器と共同で学習した補助損失推定器に基づく新たな正規化戦略を提案する。
論文 参考訳(メタデータ) (2020-10-22T20:40:44Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
マルチスケールの伝搬により微分同相モデルを最適化する,新しいディープラーニングベースのフレームワークを開発した。
我々は,脳MRIデータにおける画像-アトラス登録,肝CTデータにおける画像-画像登録を含む,3次元ボリュームデータセットにおける画像登録実験の2つのグループを実行する。
論文 参考訳(メタデータ) (2020-04-30T03:23:45Z) - BP-DIP: A Backprojection based Deep Image Prior [49.375539602228415]
画像復元手法として, (i)Deep Image Prior (DIP) と (ii) バックプロジェクション (BP) の2つの手法を提案する。
提案手法はBP-DIP(BP-DIP)と呼ばれ,高いPSNR値とより優れた推論実行時間を持つ通常のDIPよりも優れた性能を示す。
論文 参考訳(メタデータ) (2020-03-11T17:09:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。