論文の概要: Sketched Equivariant Imaging Regularization and Deep Internal Learning for Inverse Problems
- arxiv url: http://arxiv.org/abs/2411.05771v4
- Date: Fri, 06 Jun 2025 17:52:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-09 17:28:42.712252
- Title: Sketched Equivariant Imaging Regularization and Deep Internal Learning for Inverse Problems
- Title(参考訳): 逆問題に対するSketched Equivariant Imaging RegularizationとDeep Internal Learning
- Authors: Guixian Xu, Jinglai Li, Junqi Tang,
- Abstract要約: 等変イメージング(EI)正則化は、ディープイメージングネットワークの教師なしトレーニングにおけるデファクト技術となっている。
本稿では,ランダムなスケッチ手法を応用したスケッチ付きEI正規化手法を提案する。
- 参考スコア(独自算出の注目度): 4.287621751502392
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Equivariant Imaging (EI) regularization has become the de-facto technique for unsupervised training of deep imaging networks, without any need of ground-truth data. Observing that the EI-based unsupervised training paradigm currently has significant computational redundancy leading to inefficiency in high-dimensional applications, we propose a sketched EI regularization which leverages the randomized sketching techniques for acceleration. We apply our sketched EI regularization to develop an accelerated deep internal learning framework, which can be efficiently applied for test-time network adaptation. Additionally, for network adaptation tasks, we propose a parameter-efficient approach to accelerate both EI and Sketched-EI via optimizing only the normalization layers. Our numerical study on X-ray CT and multicoil magnetic resonance image reconstruction tasks demonstrate that our approach can achieve significant computational acceleration over standard EI counterpart in single-input setting and network adaptation at test time.
- Abstract(参考訳): 等変イメージング(EI)正則化は、地上データを必要としないディープイメージングネットワークの教師なしトレーニングのデファクト技術となっている。
EIをベースとした教師なしトレーニングのパラダイムが、高次元アプリケーションにおいて非効率な計算冗長性を持つのを観察し、ランダム化されたスケッチ技術を利用したスケッチ付きEI正規化を提案する。
スケッチしたEI正規化を応用して、テスト時間ネットワーク適応に効率的に適用可能な、高速化された深層学習フレームワークを開発する。
さらに,ネットワーク適応タスクに対して,正規化層のみを最適化することで,EIとSketched-EIの双方を高速化するパラメータ効率の手法を提案する。
X線CTとマルチコイル磁気共鳴画像再構成タスクの数値的研究により,本手法は単入力設定およびテスト時のネットワーク適応において,標準EIよりも大きな計算高速化を実現することができることを示した。
関連論文リスト
- Fast Equivariant Imaging: Acceleration for Unsupervised Learning via Augmented Lagrangian and Auxiliary PnP Denoisers [4.287621751502392]
地磁気データを使わずにディープイメージングネットワークを効率的に訓練するための,新しい教師なし学習フレームワークであるFast Equivariant Imaging (FEI)を提案する。
FEIは、バニラ同変イメージングのパラダイムよりも効率と性能が優れている。
論文 参考訳(メタデータ) (2025-07-09T11:47:06Z) - Deep regularization networks for inverse problems with noisy operators [2.665036498336221]
主演算子が雑音データから構築される大きな逆問題に対して,教師付き学習手法を提案する。
ニューラル演算子は、散乱方程式の右側のパターンを対応する正規化パラメータにマッピングする。
我々は,相違原理の論理から情報を得たネットワークが,高いコントラストの画像に繋がることを示す。
論文 参考訳(メタデータ) (2025-06-08T06:19:18Z) - Component-based Sketching for Deep ReLU Nets [55.404661149594375]
各種タスクのためのディープネットコンポーネントに基づくスケッチ手法を開発した。
我々はディープネットトレーニングを線形経験的リスク最小化問題に変換する。
提案したコンポーネントベーススケッチは飽和関数の近似においてほぼ最適であることを示す。
論文 参考訳(メタデータ) (2024-09-21T15:30:43Z) - Adaptive Anomaly Detection in Network Flows with Low-Rank Tensor Decompositions and Deep Unrolling [9.20186865054847]
異常検出(AD)は、将来の通信システムのレジリエンスを確保するための重要な要素として、ますます認識されている。
この研究は、不完全測定を用いたネットワークフローにおけるADについて考察する。
本稿では,正規化モデル適合性に基づくブロック帰属凸近似アルゴリズムを提案する。
ベイズ的アプローチに触発されて、我々はモデルアーキテクチャを拡張し、フローごとのオンライン適応とステップごとの統計処理を行う。
論文 参考訳(メタデータ) (2024-09-17T19:59:57Z) - Analysis of Deep Image Prior and Exploiting Self-Guidance for Image
Reconstruction [13.277067849874756]
DIPがアンダーサンプドイメージング計測からどのように情報を回収するかを検討する。
ネットワーク重みと入力の両方を同時に最適化する自己駆動型再構築プロセスを導入する。
提案手法は,ネットワーク入力画像と再構成画像の両方の堅牢かつ安定した関節推定を可能にする,新しいデノイザ正規化項を組み込んだものである。
論文 参考訳(メタデータ) (2024-02-06T15:52:23Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
画像超解像(SR)は、CNNからトランスフォーマーアーキテクチャへの広範なニューラルネットワーク設計を目撃している。
本研究は,市販のネットワーク設計を生かし,基礎となる計算オーバーヘッドを低減するため,超高解像度イテレーションにおけるネットワークプルーニングの可能性について検討する。
本研究では, ランダムネットワークのスパース構造を最適化し, 重要でない重みを小さめに微調整することにより, 反復型軟収縮率(ISS-P)法を提案する。
論文 参考訳(メタデータ) (2023-03-16T21:06:13Z) - Accelerating Deep Unrolling Networks via Dimensionality Reduction [5.73658856166614]
ディープ・アンローリング・ネットワークは現在、逆問題の画像化のための最先端のソリューションである。
X線CTやMRIなどの高次元イメージングタスクでは、ディープ・アンローリング・スキームは通常非効率になる。
本稿では,次元削減方式を用いた効率的なディープ・アンローリング・ネットワークを設計するための新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2022-08-31T11:45:21Z) - A Fast Alternating Minimization Algorithm for Coded Aperture Snapshot
Spectral Imaging Based on Sparsity and Deep Image Priors [8.890754092562918]
Coded Aperture snapshot Spectrum Imaging (CASSI)は、3次元ハイパースペクトル画像(HSI)を再構成する技術である。
本稿では,自然画像の空間と深部画像の先行値(Fama-P)に基づいて,高速な変動最小化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-06-12T03:29:14Z) - Deep Generalized Unfolding Networks for Image Restoration [16.943609020362395]
画像復元のためのDeep Generalized Unfolding Network (DGUNet)を提案する。
我々は、勾配推定戦略をPGDアルゴリズムの勾配降下ステップに統合する。
我々の手法は、最先端の性能、解釈可能性、一般化可能性の点で優れている。
論文 参考訳(メタデータ) (2022-04-28T08:39:39Z) - Low-light Image Enhancement by Retinex Based Algorithm Unrolling and
Adjustment [50.13230641857892]
本稿では,低照度画像強調(LIE)問題に対する新たなディープラーニングフレームワークを提案する。
提案フレームワークは,大域的明るさと局所的明るさ感度の両方を考慮したアルゴリズムアンロールと調整ネットワークに着想を得た分解ネットワークを含む。
一連の典型的なLIEデータセットの実験では,既存の手法と比較して,定量的かつ視覚的に,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2022-02-12T03:59:38Z) - Equivariance Regularization for Image Reconstruction [5.025654873456756]
不完全な測定条件下での画像逆問題に対する構造適応正則化手法を提案する。
この正規化スキームは、測定の物理学における同変構造を利用して、逆問題の不当な位置を緩和する。
提案手法は,古典的な一階最適化アルゴリズムとともに,プラグ・アンド・プレイ方式で適用することができる。
論文 参考訳(メタデータ) (2022-02-10T14:38:08Z) - Deep Image Prior using Stein's Unbiased Risk Estimator: SURE-DIP [31.408877556706376]
超高解像度イメージングを含む多くのイメージングアプリケーションでは、トレーニングデータが不足している。
シングルショット画像回復のためのディープ画像先行アルゴリズム(DIP)が導入され、トレーニングデータの必要性を完全に排除した。
オーバーフィッティングを最小限に抑えるため,一般化されたStein's Unbiased Risk Estimation (GSURE)損失指標を導入する。
論文 参考訳(メタデータ) (2021-11-21T20:11:56Z) - Image-specific Convolutional Kernel Modulation for Single Image
Super-resolution [85.09413241502209]
本稿では,新しい画像特異的畳み込み変調カーネル(IKM)を提案する。
我々は、画像や特徴のグローバルな文脈情報を利用して、畳み込みカーネルを適応的に調整するための注意重みを生成する。
単一画像超解像実験により,提案手法は最先端手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2021-11-16T11:05:10Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - Unsupervised Monocular Depth Learning with Integrated Intrinsics and
Spatio-Temporal Constraints [61.46323213702369]
本研究は,大規模深度マップとエゴモーションを予測可能な教師なし学習フレームワークを提案する。
本結果は,KITTI運転データセットの複数シーケンスにおける現在の最先端技術と比較して,高い性能を示す。
論文 参考訳(メタデータ) (2020-11-02T22:26:58Z) - Using Deep Image Priors to Generate Counterfactual Explanations [38.62513524757573]
ディープ画像先行(DIP)は、潜在表現エンコーディングからプレイメージを得るために用いられる。
本稿では,予測器と共同で学習した補助損失推定器に基づく新たな正規化戦略を提案する。
論文 参考訳(メタデータ) (2020-10-22T20:40:44Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
我々は、バリエーションのホストが、我々が提案する統一されたフレームワークでカバー可能であることを示す。
本稿では,この手法の収束性を証明し,ResNet,LSTM,Transformer上での経験的性能を厳格に評価する。
論文 参考訳(メタデータ) (2020-06-10T08:22:41Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
マルチスケールの伝搬により微分同相モデルを最適化する,新しいディープラーニングベースのフレームワークを開発した。
我々は,脳MRIデータにおける画像-アトラス登録,肝CTデータにおける画像-画像登録を含む,3次元ボリュームデータセットにおける画像登録実験の2つのグループを実行する。
論文 参考訳(メタデータ) (2020-04-30T03:23:45Z) - BP-DIP: A Backprojection based Deep Image Prior [49.375539602228415]
画像復元手法として, (i)Deep Image Prior (DIP) と (ii) バックプロジェクション (BP) の2つの手法を提案する。
提案手法はBP-DIP(BP-DIP)と呼ばれ,高いPSNR値とより優れた推論実行時間を持つ通常のDIPよりも優れた性能を示す。
論文 参考訳(メタデータ) (2020-03-11T17:09:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。