Fact or Fiction? Can LLMs be Reliable Annotators for Political Truths?
- URL: http://arxiv.org/abs/2411.05775v1
- Date: Fri, 08 Nov 2024 18:36:33 GMT
- Title: Fact or Fiction? Can LLMs be Reliable Annotators for Political Truths?
- Authors: Veronica Chatrath, Marcelo Lotif, Shaina Raza,
- Abstract summary: Political misinformation poses challenges to democratic processes, shaping public opinion and trust in media.
This study investigates the use of state-of-the-art large language models (LLMs) as reliable annotators for detecting political factuality in news articles.
- Score: 2.321323878201932
- License:
- Abstract: Political misinformation poses significant challenges to democratic processes, shaping public opinion and trust in media. Manual fact-checking methods face issues of scalability and annotator bias, while machine learning models require large, costly labelled datasets. This study investigates the use of state-of-the-art large language models (LLMs) as reliable annotators for detecting political factuality in news articles. Using open-source LLMs, we create a politically diverse dataset, labelled for bias through LLM-generated annotations. These annotations are validated by human experts and further evaluated by LLM-based judges to assess the accuracy and reliability of the annotations. Our approach offers a scalable and robust alternative to traditional fact-checking, enhancing transparency and public trust in media.
Related papers
- Justice or Prejudice? Quantifying Biases in LLM-as-a-Judge [84.34545223897578]
Despite their excellence in many domains, potential issues are under-explored, undermining their reliability and the scope of their utility.
We identify 12 key potential biases and propose a new automated bias quantification framework-CALM- which quantifies and analyzes each type of bias in LLM-as-a-Judge.
Our work highlights the need for stakeholders to address these issues and remind users to exercise caution in LLM-as-a-Judge applications.
arXiv Detail & Related papers (2024-10-03T17:53:30Z) - Bias in LLMs as Annotators: The Effect of Party Cues on Labelling Decision by Large Language Models [0.0]
We test similar biases in Large Language Models (LLMs) as annotators.
Unlike humans, who are only biased when faced with statements from extreme parties, LLMs exhibit significant bias even when prompted with statements from center-left and center-right parties.
arXiv Detail & Related papers (2024-08-28T16:05:20Z) - CLAMBER: A Benchmark of Identifying and Clarifying Ambiguous Information Needs in Large Language Models [60.59638232596912]
We introduce CLAMBER, a benchmark for evaluating large language models (LLMs)
Building upon the taxonomy, we construct 12K high-quality data to assess the strengths, weaknesses, and potential risks of various off-the-shelf LLMs.
Our findings indicate the limited practical utility of current LLMs in identifying and clarifying ambiguous user queries.
arXiv Detail & Related papers (2024-05-20T14:34:01Z) - Assessing Political Bias in Large Language Models [0.624709220163167]
We evaluate the political bias of open-source Large Language Models (LLMs) concerning political issues within the European Union (EU) from a German voter's perspective.
We show that larger models, such as Llama3-70B, tend to align more closely with left-leaning political parties, while smaller models often remain neutral.
arXiv Detail & Related papers (2024-05-17T15:30:18Z) - LLMs' Reading Comprehension Is Affected by Parametric Knowledge and Struggles with Hypothetical Statements [59.71218039095155]
Task of reading comprehension (RC) provides a primary means to assess language models' natural language understanding (NLU) capabilities.
If the context aligns with the models' internal knowledge, it is hard to discern whether the models' answers stem from context comprehension or from internal information.
To address this issue, we suggest to use RC on imaginary data, based on fictitious facts and entities.
arXiv Detail & Related papers (2024-04-09T13:08:56Z) - Investigating Bias in LLM-Based Bias Detection: Disparities between LLMs and Human Perception [13.592532358127293]
We investigate the presence and nature of bias within Large Language Models (LLMs)
We probe whether LLMs exhibit biases, particularly in political bias prediction and text continuation tasks.
We propose debiasing strategies, including prompt engineering and model fine-tuning.
arXiv Detail & Related papers (2024-03-22T00:59:48Z) - Whose Side Are You On? Investigating the Political Stance of Large Language Models [56.883423489203786]
We investigate the political orientation of Large Language Models (LLMs) across a spectrum of eight polarizing topics.
Our investigation delves into the political alignment of LLMs across a spectrum of eight polarizing topics, spanning from abortion to LGBTQ issues.
The findings suggest that users should be mindful when crafting queries, and exercise caution in selecting neutral prompt language.
arXiv Detail & Related papers (2024-03-15T04:02:24Z) - Political Compass or Spinning Arrow? Towards More Meaningful Evaluations for Values and Opinions in Large Language Models [61.45529177682614]
We challenge the prevailing constrained evaluation paradigm for values and opinions in large language models.
We show that models give substantively different answers when not forced.
We distill these findings into recommendations and open challenges in evaluating values and opinions in LLMs.
arXiv Detail & Related papers (2024-02-26T18:00:49Z) - Exploring the Jungle of Bias: Political Bias Attribution in Language Models via Dependency Analysis [86.49858739347412]
Large Language Models (LLMs) have sparked intense debate regarding the prevalence of bias in these models and its mitigation.
We propose a prompt-based method for the extraction of confounding and mediating attributes which contribute to the decision process.
We find that the observed disparate treatment can at least in part be attributed to confounding and mitigating attributes and model misalignment.
arXiv Detail & Related papers (2023-11-15T00:02:25Z) - Accuracy and Political Bias of News Source Credibility Ratings by Large Language Models [8.367075755850983]
This paper audits eight widely used language models (LLMs) from three major providers to evaluate their ability to discern credible and high-quality information sources.
We find that larger models more frequently refuse to provide ratings due to insufficient information, whereas smaller models are more prone to hallucination in their ratings.
arXiv Detail & Related papers (2023-04-01T05:04:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.