論文の概要: GazeSearch: Radiology Findings Search Benchmark
- arxiv url: http://arxiv.org/abs/2411.05780v1
- Date: Fri, 08 Nov 2024 18:47:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-11 14:55:33.557336
- Title: GazeSearch: Radiology Findings Search Benchmark
- Title(参考訳): GazeSearch:Radiologyが検索ベンチマークを発見
- Authors: Trong Thang Pham, Tien-Phat Nguyen, Yuki Ikebe, Akash Awasthi, Zhigang Deng, Carol C. Wu, Hien Nguyen, Ngan Le,
- Abstract要約: 医用アイトラッキングデータは、放射線医が医療画像をどのように視覚的に解釈するかを理解するための重要な情報源である。
現在の視線追跡データは分散され、処理されず、曖昧であり、意味のある洞察を導き出すことが困難である。
本研究では,目標となる視覚探索課題に触発された改良手法を提案する。
- 参考スコア(独自算出の注目度): 9.21918773048464
- License:
- Abstract: Medical eye-tracking data is an important information source for understanding how radiologists visually interpret medical images. This information not only improves the accuracy of deep learning models for X-ray analysis but also their interpretability, enhancing transparency in decision-making. However, the current eye-tracking data is dispersed, unprocessed, and ambiguous, making it difficult to derive meaningful insights. Therefore, there is a need to create a new dataset with more focus and purposeful eyetracking data, improving its utility for diagnostic applications. In this work, we propose a refinement method inspired by the target-present visual search challenge: there is a specific finding and fixations are guided to locate it. After refining the existing eye-tracking datasets, we transform them into a curated visual search dataset, called GazeSearch, specifically for radiology findings, where each fixation sequence is purposefully aligned to the task of locating a particular finding. Subsequently, we introduce a scan path prediction baseline, called ChestSearch, specifically tailored to GazeSearch. Finally, we employ the newly introduced GazeSearch as a benchmark to evaluate the performance of current state-of-the-art methods, offering a comprehensive assessment for visual search in the medical imaging domain.
- Abstract(参考訳): 医用アイトラッキングデータは、放射線医が医療画像をどのように視覚的に解釈するかを理解するための重要な情報源である。
この情報は、X線分析のためのディープラーニングモデルの精度を向上するだけでなく、その解釈可能性も向上し、意思決定における透明性を高める。
しかし、現在の視線追跡データは分散され、処理されず、曖昧であり、意味のある洞察を導き出すことが困難である。
したがって、より焦点を絞り、目的を絞ったアイトラッキングデータを持つ新しいデータセットを作成する必要がある。
本研究では,目標となる視覚探索課題に触発された改良手法を提案する。
既存の視線追跡データセットを精査した後、我々はそれらをGazeSearchと呼ばれるキュレートされたビジュアル検索データセットに変換しました。
次に、特にGazeSearchに合わせて、ChestSearchと呼ばれるスキャンパス予測ベースラインを導入します。
最後に,新しいGazeSearchをベンチマークとして,現在の最先端手法の性能評価に使用し,医用画像領域におけるビジュアルサーチの総合的な評価を行う。
関連論文リスト
- Eye-gaze Guided Multi-modal Alignment for Medical Representation Learning [65.54680361074882]
アイゲイズガイドマルチモーダルアライメント(EGMA)フレームワークは、アイゲイズデータを利用して、医用視覚的特徴とテキスト的特徴のアライメントを改善する。
我々は4つの医療データセット上で画像分類と画像テキスト検索の下流タスクを行う。
論文 参考訳(メタデータ) (2024-03-19T03:59:14Z) - I-AI: A Controllable & Interpretable AI System for Decoding
Radiologists' Intense Focus for Accurate CXR Diagnoses [9.260958560874812]
解釈可能な人工知能(I-AI)は、新しく統一された制御可能な解釈可能なパイプラインである。
私たちのI-AIは、放射線科医がどこに見えるか、特定の領域にどのくらい焦点を合わせるか、どの発見を診断するか、という3つの重要な疑問に対処しています。
論文 参考訳(メタデータ) (2023-09-24T04:48:44Z) - Deep Learning and Computer Vision for Glaucoma Detection: A Review [0.8379286663107844]
緑内障は世界中で不可逆的な盲目の原因となっている。
コンピュータビジョンとディープラーニングの最近の進歩は、自動評価の可能性を示している。
眼底,光コヒーレンス断層撮影,視野画像を用いたAIによる緑内障の診断に関する最近の研究について調査した。
論文 参考訳(メタデータ) (2023-07-31T09:49:51Z) - Data-Efficient Vision Transformers for Multi-Label Disease
Classification on Chest Radiographs [55.78588835407174]
視覚変換器(ViT)は一般的な画像の分類性能が高いにもかかわらず、このタスクには適用されていない。
ViTは、畳み込みではなくパッチベースの自己アテンションに依存しており、CNNとは対照的に、ローカル接続に関する事前の知識は存在しない。
以上の結果から,ViTとCNNのパフォーマンスはViTの利点に匹敵するものの,DeiTsはトレーニング用に適度に大規模なデータセットが利用可能であれば,前者よりも優れることがわかった。
論文 参考訳(メタデータ) (2022-08-17T09:07:45Z) - Deep Supervised Information Bottleneck Hashing for Cross-modal Retrieval
based Computer-aided Diagnosis [17.0847996323416]
本稿では,ハッシュコードの識別性を効果的に強化するディープ・スーパービジョン・インフォメーション・ボトルネック・ハッシュ(DSIBH)を提案する。
これにより、過剰な情報が減少し、ハッシュコードの識別が容易になる。
DSIBHの精度は, クロスモーダルな医療データ検索作業における最先端技術と比較して高い結果が得られた。
論文 参考訳(メタデータ) (2022-05-06T11:43:17Z) - Follow My Eye: Using Gaze to Supervise Computer-Aided Diagnosis [54.60796004113496]
医用画像を読む放射線科医の眼球運動は,DNNベースのコンピュータ支援診断システム(CAD)を訓練するための新たな指導形態であることが実証された。
画像を読んでいるときに、放射線科医の視線を記録します。
視線情報は処理され、アテンション一貫性モジュールを介してDNNの注意を監督するために使用される。
論文 参考訳(メタデータ) (2022-04-06T08:31:05Z) - Leveraging Human Selective Attention for Medical Image Analysis with
Limited Training Data [72.1187887376849]
選択的な注意機構は、注意散らしの存在を無視することで、認知システムがタスク関連視覚的手がかりに焦点を合わせるのに役立つ。
本稿では,医療画像解析タスクにおいて,小さなトレーニングデータを用いたガベージを利用したフレームワークを提案する。
本手法は腫瘍の3次元分割と2次元胸部X線分類において優れた性能を示す。
論文 参考訳(メタデータ) (2021-12-02T07:55:25Z) - Anomaly Detection in Medical Imaging -- A Mini Review [0.8122270502556374]
本稿では,医療画像における関連異常検出論文の半発掘文献レビューを用いて,アプリケーションをクラスタリングする。
主な結果は、ラベル付きデータの必要性を減らすことで、現在の研究が主に動機付けされていることを示している。
また、脳MRI領域における多くの研究が成功し、OCTや胸部X線といったさらなる領域への応用の可能性を示している。
論文 参考訳(メタデータ) (2021-08-25T11:45:40Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
マルチビューサブスペース学習のための深層コアテンションネットワークを提案する。
共通情報と相補情報の両方を敵意で抽出することを目的としている。
特に、新しいクロス再構成損失を使用し、ラベル情報を利用して潜在表現の構築を誘導する。
論文 参考訳(メタデータ) (2021-02-15T18:46:44Z) - Cross-Task Representation Learning for Anatomical Landmark Detection [20.079451546446712]
本稿では,クロスタスク表現学習を通じて,ソースとターゲットタスク間の知識伝達を規則化することを提案する。
本手法は胎児アルコール症候群の診断を容易にする顔の解剖学的特徴を抽出するためのものである。
本稿では,目的モデル上の最終モデルの特徴と中間モデルの特徴を制約することにより,表現学習のための2つのアプローチを提案する。
論文 参考訳(メタデータ) (2020-09-28T21:22:49Z) - Learning Invariant Feature Representation to Improve Generalization
across Chest X-ray Datasets [55.06983249986729]
我々は、トレーニングデータと同じデータセットでテストすると、ディープラーニングモデルが、異なるソースからデータセットでテストされると、パフォーマンスが低下し始めることを示す。
対戦型トレーニング戦略を用いることで、ネットワークはソース不変表現を学習せざるを得ないことを示す。
論文 参考訳(メタデータ) (2020-08-04T07:41:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。