Dialectal Coverage And Generalization in Arabic Speech Recognition
- URL: http://arxiv.org/abs/2411.05872v1
- Date: Thu, 07 Nov 2024 22:23:30 GMT
- Title: Dialectal Coverage And Generalization in Arabic Speech Recognition
- Authors: Amirbek Djanibekov, Hawau Olamide Toyin, Raghad Alshalan, Abdullah Alitr, Hanan Aldarmaki,
- Abstract summary: This study explores the role of dialectal coverage in pre-training, the effectiveness of dialect-specific fine-tuning, and the ability to generalize to unseen dialects.
Through extensive experiments across different dialect combinations, our findings offer key insights towards advancing the development of ASR systems for pluricentric languages like Arabic.
- Score: 0.6757476692230007
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Developing robust automatic speech recognition (ASR) systems for Arabic, a language characterized by its rich dialectal diversity and often considered a low-resource language in speech technology, demands effective strategies to manage its complexity. This study explores three critical factors influencing ASR performance: the role of dialectal coverage in pre-training, the effectiveness of dialect-specific fine-tuning compared to a multi-dialectal approach, and the ability to generalize to unseen dialects. Through extensive experiments across different dialect combinations, our findings offer key insights towards advancing the development of ASR systems for pluricentric languages like Arabic.
Related papers
- Enhanced Arabic Text Retrieval with Attentive Relevance Scoring [12.053940320312355]
Arabic poses a particular challenge for natural language processing and information retrieval.<n>Despite the growing global significance of Arabic, it is still underrepresented in NLP research and benchmark resources.<n>We present an enhanced Dense Passage Retrieval framework developed specifically for Arabic.
arXiv Detail & Related papers (2025-07-31T10:18:28Z) - Open Automatic Speech Recognition Models for Classical and Modern Standard Arabic [15.807843278492847]
We introduce a universal methodology for Arabic speech and text processing designed to address unique challenges of the language.<n>We train two novel models based on the FastConformer architecture: one designed specifically for Modern Standard Arabic (MSA) and the other, the first unified public model for both MSA and Classical Arabic (CA)<n>The MSA model sets a new benchmark with state-of-the-art (SOTA) performance on related datasets, while the unified model achieves SOTA accuracy with diacritics for CA while maintaining strong performance for MSA.
arXiv Detail & Related papers (2025-07-18T14:42:18Z) - Efficient Multilingual ASR Finetuning via LoRA Language Experts [59.27778147311189]
This paper proposes an efficient finetuning framework for customized multilingual ASR via prepared LoRA language experts based on Whisper.<n>Through LoRA expert fusion or knowledge distillation, our approach achieves better recognition performance on target languages than standard fine-tuning methods.<n> Experimental results demonstrate that the proposed models yield approximately 10% and 15% relative performance gains in language-aware and language-agnostic scenarios.
arXiv Detail & Related papers (2025-06-11T07:06:27Z) - Speaker Diarization for Low-Resource Languages Through Wav2vec Fine-Tuning [4.396936958546459]
We train the Wav2Vec 2.0 self-supervised learning model on a dedicated Kurdish corpus.
We adapt multilingual representations learned from other languages to capture the phonetic and acoustic characteristics of Kurdish speech.
Results establish a foundation for building effective diarization systems in other under-studied languages.
arXiv Detail & Related papers (2025-04-23T10:45:59Z) - Advancing Arabic Speech Recognition Through Large-Scale Weakly Supervised Learning [0.0]
We employ weakly supervised learning to train an Arabic ASR model using the Conformer architecture.<n>Our model is trained from scratch on 15,000 hours of weakly annotated speech data covering both Modern Standard Arabic (MSA) and Dialectal Arabic (DA)
arXiv Detail & Related papers (2025-04-16T17:05:14Z) - Enhancing Multilingual ASR for Unseen Languages via Language Embedding Modeling [50.62091603179394]
Whisper, one of the most advanced ASR models, handles 99 languages effectively.
However, Whisper struggles with unseen languages, those not included in its pre-training.
We propose methods that exploit these relationships to enhance ASR performance on unseen languages.
arXiv Detail & Related papers (2024-12-21T04:05:43Z) - Second Language (Arabic) Acquisition of LLMs via Progressive Vocabulary Expansion [55.27025066199226]
This paper addresses the need for democratizing large language models (LLM) in the Arab world.<n>One practical objective for an Arabic LLM is to utilize an Arabic-specific vocabulary for the tokenizer that could speed up decoding.<n>Inspired by the vocabulary learning during Second Language (Arabic) Acquisition for humans, the released AraLLaMA employs progressive vocabulary expansion.
arXiv Detail & Related papers (2024-12-16T19:29:06Z) - MSA-ASR: Efficient Multilingual Speaker Attribution with frozen ASR Models [59.80042864360884]
Speaker-attributed automatic speech recognition (SA-ASR) aims to transcribe speech while assigning transcripts to the corresponding speakers accurately.
This paper introduces a novel approach, leveraging a frozen multilingual ASR model to incorporate speaker attribution into the transcriptions.
arXiv Detail & Related papers (2024-11-27T09:01:08Z) - CORAL: Benchmarking Multi-turn Conversational Retrieval-Augmentation Generation [68.81271028921647]
We introduce CORAL, a benchmark designed to assess RAG systems in realistic multi-turn conversational settings.
CORAL includes diverse information-seeking conversations automatically derived from Wikipedia.
It supports three core tasks of conversational RAG: passage retrieval, response generation, and citation labeling.
arXiv Detail & Related papers (2024-10-30T15:06:32Z) - Improving Speech Emotion Recognition in Under-Resourced Languages via Speech-to-Speech Translation with Bootstrapping Data Selection [49.27067541740956]
Speech Emotion Recognition (SER) is a crucial component in developing general-purpose AI agents capable of natural human-computer interaction.
Building robust multilingual SER systems remains challenging due to the scarcity of labeled data in languages other than English and Chinese.
We propose an approach to enhance SER performance in low SER resource languages by leveraging data from high-resource languages.
arXiv Detail & Related papers (2024-09-17T08:36:45Z) - A New Benchmark for Evaluating Automatic Speech Recognition in the Arabic Call Domain [0.0]
This work is an attempt to introduce a comprehensive benchmark for Arabic speech recognition, specifically tailored to address the challenges of telephone conversations in Arabic language.
Our work aims to establish a robust benchmark that not only encompasses the broad spectrum of Arabic dialects but also emulates the real-world conditions of call-based communications.
arXiv Detail & Related papers (2024-03-07T07:24:32Z) - The Balancing Act: Unmasking and Alleviating ASR Biases in Portuguese [5.308321515594125]
This study is dedicated to a comprehensive exploration of the Whisper and MMS systems.
Our investigation encompasses various categories, including gender, age, skin tone color, and geo-location.
We empirically show that oversampling techniques alleviate such stereotypical biases.
arXiv Detail & Related papers (2024-02-12T09:35:13Z) - Quantifying the Dialect Gap and its Correlates Across Languages [69.18461982439031]
This work will lay the foundation for furthering the field of dialectal NLP by laying out evident disparities and identifying possible pathways for addressing them through mindful data collection.
arXiv Detail & Related papers (2023-10-23T17:42:01Z) - VoxArabica: A Robust Dialect-Aware Arabic Speech Recognition System [16.420831300734697]
VoxArabica is a system for dialect identification (DID) and automatic speech recognition (ASR) of Arabic.
We train a wide range of models such as HuBERT (DID), Whisper, and XLS-R (ASR) in a supervised setting for Arabic DID and ASR tasks.
We finetune our ASR models on MSA, Egyptian, Moroccan, and mixed data.
We integrate these models into a single web interface with diverse features such as audio recording, file upload, model selection, and the option to raise flags for incorrect outputs.
arXiv Detail & Related papers (2023-10-17T08:33:02Z) - AceGPT, Localizing Large Language Models in Arabic [73.39989503874634]
The paper proposes a comprehensive solution that includes pre-training with Arabic texts, Supervised Fine-Tuning (SFT) utilizing native Arabic instructions, and GPT-4 responses in Arabic.
The goal is to cultivate culturally cognizant and value-aligned Arabic LLMs capable of accommodating the diverse, application-specific needs of Arabic-speaking communities.
arXiv Detail & Related papers (2023-09-21T13:20:13Z) - Exploring the Integration of Speech Separation and Recognition with
Self-Supervised Learning Representation [83.36685075570232]
This work provides an insightful investigation of speech separation in reverberant and noisy-reverberant scenarios as an ASR front-end.
We explore multi-channel separation methods, mask-based beamforming and complex spectral mapping, as well as the best features to use in the ASR back-end model.
A proposed integration using TF-GridNet-based complex spectral mapping and WavLM-based SSLR achieves a 2.5% word error rate in reverberant WHAMR! test set.
arXiv Detail & Related papers (2023-07-23T05:39:39Z) - MoLE : Mixture of Language Experts for Multi-Lingual Automatic Speech
Recognition [12.23416994447554]
We present a multi-lingual speech recognition network named Mixture-of-Language-Expert(MoLE)
MoLE analyzes linguistic expression from input speech in arbitrary languages, activating a language-specific expert with a lightweight language tokenizer.
Based on the reliability, the activated expert and the language-agnostic expert are aggregated to represent language-conditioned embedding.
arXiv Detail & Related papers (2023-02-27T13:26:17Z) - LAE: Language-Aware Encoder for Monolingual and Multilingual ASR [87.74794847245536]
A novel language-aware encoder (LAE) architecture is proposed to handle both situations by disentangling language-specific information.
Experiments conducted on Mandarin-English code-switched speech suggest that the proposed LAE is capable of discriminating different languages in frame-level.
arXiv Detail & Related papers (2022-06-05T04:03:12Z) - A Highly Adaptive Acoustic Model for Accurate Multi-Dialect Speech
Recognition [80.87085897419982]
We propose a novel acoustic modeling technique for accurate multi-dialect speech recognition with a single AM.
Our proposed AM is dynamically adapted based on both dialect information and its internal representation, which results in a highly adaptive AM for handling multiple dialects simultaneously.
The experimental results on large scale speech datasets show that the proposed AM outperforms all the previous ones, reducing word error rates (WERs) by 8.11% relative compared to a single all-dialects AM and by 7.31% relative compared to dialect-specific AMs.
arXiv Detail & Related papers (2022-05-06T06:07:09Z) - Towards One Model to Rule All: Multilingual Strategy for Dialectal
Code-Switching Arabic ASR [11.363966269198064]
We design a large multilingual end-to-end ASR using self-attention based conformer architecture.
We trained the system using Arabic (Ar), English (En) and French (Fr) languages.
Our findings demonstrate the strength of such a model by outperforming state-of-the-art monolingual dialectal Arabic and code-switching Arabic ASR.
arXiv Detail & Related papers (2021-05-31T08:20:38Z) - Accented Speech Recognition: A Survey [0.0]
We present a survey of current promising approaches to accented speech recognition.
The resulting bias in ASR performance across accents comes at a cost to both users and providers of ASR.
arXiv Detail & Related papers (2021-04-21T20:21:06Z) - Multilingual and code-switching ASR challenges for low resource Indian
languages [59.2906853285309]
We focus on building multilingual and code-switching ASR systems through two different subtasks related to a total of seven Indian languages.
We provide a total of 600 hours of transcribed speech data, comprising train and test sets, in these languages.
We also provide a baseline recipe for both the tasks with a WER of 30.73% and 32.45% on the test sets of multilingual and code-switching subtasks, respectively.
arXiv Detail & Related papers (2021-04-01T03:37:01Z) - How Phonotactics Affect Multilingual and Zero-shot ASR Performance [74.70048598292583]
A Transformer encoder-decoder model has been shown to leverage multilingual data well in IPA transcriptions of languages presented during training.
We replace the encoder-decoder with a hybrid ASR system consisting of a separate AM and LM.
We show that the gain from modeling crosslingual phonotactics is limited, and imposing a too strong model can hurt the zero-shot transfer.
arXiv Detail & Related papers (2020-10-22T23:07:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.