論文の概要: Towards Equitable ASD Diagnostics: A Comparative Study of Machine and Deep Learning Models Using Behavioral and Facial Data
- arxiv url: http://arxiv.org/abs/2411.05880v1
- Date: Fri, 08 Nov 2024 05:26:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:12:45.424778
- Title: Towards Equitable ASD Diagnostics: A Comparative Study of Machine and Deep Learning Models Using Behavioral and Facial Data
- Title(参考訳): 等価ASD診断に向けて:行動データと顔データを用いた機械学習モデルとディープラーニングモデルの比較検討
- Authors: Mohammed Aledhari, Mohamed Rahouti, Ali Alfatemi,
- Abstract要約: 自閉症スペクトラム障害(ASD)は性差によって診断されることが多い。
本研究では, 機械学習モデル, 特にランダムフォレストと畳み込みニューラルネットワークを評価し, ASD 診断の精度を高める。
- 参考スコア(独自算出の注目度): 2.6353853440763113
- License:
- Abstract: Autism Spectrum Disorder (ASD) is often underdiagnosed in females due to gender-specific symptom differences overlooked by conventional diagnostics. This study evaluates machine learning models, particularly Random Forest and convolutional neural networks, for enhancing ASD diagnosis through structured data and facial image analysis. Random Forest achieved 100% validation accuracy across datasets, highlighting its ability to manage complex relationships and reduce false negatives, which is crucial for early intervention and addressing gender biases. In image-based analysis, MobileNet outperformed the baseline CNN, achieving 87% accuracy, though a 30% validation loss suggests possible overfitting, requiring further optimization for robustness in clinical settings. Future work will emphasize hyperparameter tuning, regularization, and transfer learning. Integrating behavioral data with facial analysis could improve diagnosis for underdiagnosed groups. These findings suggest Random Forest's high accuracy and balanced precision-recall metrics could enhance clinical workflows. MobileNet's lightweight structure also shows promise for resource-limited environments, enabling accessible ASD screening. Addressing model explainability and clinician trust will be vital.
- Abstract(参考訳): 自閉症スペクトラム障害(ASD)は、従来の診断で見過ごされる性差により、女性に診断されないことが多い。
本研究では、構造化データと顔画像解析によるASD診断を向上させるため、機械学習モデル、特にランダムフォレストと畳み込みニューラルネットワークを評価した。
Random Forestはデータセット間で100%の検証精度を達成し、複雑な関係を管理し、偽陰性を減らす能力を強調した。
画像ベースの分析では、MobileNetはベースラインCNNよりも87%の精度で性能を上げているが、30%のバリデーション損失はオーバーフィッティングの可能性を示し、臨床環境での堅牢性をさらに最適化する必要がある。
今後の作業では、ハイパーパラメータチューニング、正規化、トランスファーラーニングが重視される。
行動データと顔分析を統合することで、診断下集団の診断が改善する可能性がある。
これらの結果は、Random Forestの高精度かつバランスの取れた精度-リコール指標が、臨床ワークフローを強化する可能性があることを示唆している。
MobileNetの軽量構造はリソース制限された環境を約束しており、アクセス可能なASDスクリーニングを可能にしている。
モデル説明可能性と臨床医の信頼に対処することが不可欠である。
関連論文リスト
- Federated Anomaly Detection for Early-Stage Diagnosis of Autism Spectrum Disorders using Serious Game Data [0.0]
本研究では,AutoEncoder-based Machine Learning (ML) 手法を用いて,ASD検出のための新しい半教師付きアプローチを提案する。
この目的に特化して設計された真剣なゲームを通じて手作業で収集したデータを利用する。
ゲーミフィケーションされたアプリケーションによって収集されたセンシティブなデータは、プライバシー漏洩の影響を受けやすいため、フェデレートラーニングフレームワークを開発した。
論文 参考訳(メタデータ) (2024-10-25T23:00:12Z) - Explainable Diagnosis Prediction through Neuro-Symbolic Integration [11.842565087408449]
我々は、診断予測のための説明可能なモデルを開発するために、神経象徴的手法、特に論理ニューラルネットワーク(LNN)を用いている。
私たちのモデル、特に$M_textmulti-pathway$と$M_textcomprehensive$は、従来のモデルよりも優れたパフォーマンスを示します。
これらの知見は、医療AI応用における精度と説明可能性のギャップを埋める神経象徴的アプローチの可能性を強調している。
論文 参考訳(メタデータ) (2024-10-01T22:47:24Z) - Explainable AI for Autism Diagnosis: Identifying Critical Brain Regions Using fMRI Data [0.29687381456163997]
自閉症スペクトラム障害(ASD)の早期診断と介入は、自閉症者の生活の質を著しく向上させることが示されている。
ASDの客観的バイオマーカーは診断精度の向上に役立つ。
深層学習(DL)は,医療画像データから疾患や病態を診断する上で,優れた成果を上げている。
本研究の目的は, ASD の精度と解釈性を向上させることであり, ASD を正確に分類できるだけでなく,その動作に関する説明可能な洞察を提供する DL モデルを作成することである。
論文 参考訳(メタデータ) (2024-09-19T23:08:09Z) - Evaluating Echo State Network for Parkinson's Disease Prediction using
Voice Features [1.2289361708127877]
本研究の目的は,偽陰性の最小化と高精度化を両立できる診断モデルを開発することである。
Echo State Networks (ESN)、Random Forest、k-nearest Neighbors、Support Vector、Extreme Gradient Boosting、Decision Treeなど、さまざまな機械学習手法が採用され、徹底的に評価されている。
ESNは83%の症例で8%未満の偽陰性率を維持している。
論文 参考訳(メタデータ) (2024-01-28T14:39:43Z) - Improving Robustness and Reliability in Medical Image Classification with Latent-Guided Diffusion and Nested-Ensembles [4.249986624493547]
深層学習は高い予測精度と不確実性推定を実現することが示されている。
テスト時の入力画像のゆがみは、パフォーマンスを著しく低下させる可能性がある。
LaDiNEは,入力画像から情報および不変潜伏変数を推定できる,新規で堅牢な確率的手法である。
論文 参考訳(メタデータ) (2023-10-24T15:53:07Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
臨床試験は薬物開発に不可欠であるが、しばしば高価で非効率な患者募集に苦しむ。
近年,患者と臨床試験を自動マッチングすることで患者採用を高速化する機械学習モデルが提案されている。
本稿では,TREement という名前の動的ツリーベースメモリネットワークモデルを導入する。
論文 参考訳(メタデータ) (2023-07-19T12:35:09Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
変形性膝関節症 (KOA) は膝関節の慢性的な痛みと硬直を引き起こす疾患である。
我々は,Swin Transformer を用いて KOA の重大度を予測する自動手法を提案する。
論文 参考訳(メタデータ) (2023-07-10T09:49:30Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
本稿では,医療画像セグメンテーションネットワークにシームレスに統合可能な,実装が容易な基礎モデルであるDEviSを紹介する。
主観的論理理論を利用して、医用画像分割の問題に対する確率と不確実性を明示的にモデル化する。
DeviSには不確実性を考慮したフィルタリングモジュールが組み込まれている。
論文 参考訳(メタデータ) (2023-01-01T05:02:46Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
新型コロナウイルス(COVID-19)のパンデミックは世界中の緊急対応システムに挑戦している。
本研究は, 症状患者の血液検査データから得られた機械学習モデルについて述べる。
提案されたモデルでは、新型コロナウイルスqRT-PCRの結果を、高い精度、感度、特異性で症状のある個人に予測することができる。
論文 参考訳(メタデータ) (2020-05-10T01:45:03Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
挑戦的なシナリオで堅牢なモデリングを可能にするディープラーニングフレームワークを提案する。
その結果,85%のラベル付きデータを用いて,大規模データ設定で学習した分類器の性能に適合する予測モデルを構築することができた。
論文 参考訳(メタデータ) (2020-05-03T02:36:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。