Benchmarking 3D multi-coil NC-PDNet MRI reconstruction
- URL: http://arxiv.org/abs/2411.05883v1
- Date: Fri, 08 Nov 2024 09:14:36 GMT
- Title: Benchmarking 3D multi-coil NC-PDNet MRI reconstruction
- Authors: Asma Tanabene, Chaithya Giliyar Radhakrishna, Aurélien Massire, Mariappan S. Nadar, Philippe Ciuciu,
- Abstract summary: Non-Cartesian Primal-Dual Network (NC-PDNet) trained on compressed data with varying input channel numbers achieves an average PSNR of 42.98 dB for 1 mm isotropic 32 channel whole-brain 3D reconstruction.
With an inference time of 4.95sec and a GPU memory usage of 5.49 GB, our approach demonstrates significant potential for clinical research application.
- Score: 2.5195203844628558
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning has shown great promise for MRI reconstruction from undersampled data, yet there is a lack of research on validating its performance in 3D parallel imaging acquisitions with non-Cartesian undersampling. In addition, the artifacts and the resulting image quality depend on the under-sampling pattern. To address this uncharted territory, we extend the Non-Cartesian Primal-Dual Network (NC-PDNet), a state-of-the-art unrolled neural network, to a 3D multi-coil setting. We evaluated the impact of channel-specific versus channel-agnostic training configurations and examined the effect of coil compression. Finally, we benchmark four distinct non-Cartesian undersampling patterns, with an acceleration factor of six, using the publicly available Calgary-Campinas dataset. Our results show that NC-PDNet trained on compressed data with varying input channel numbers achieves an average PSNR of 42.98 dB for 1 mm isotropic 32 channel whole-brain 3D reconstruction. With an inference time of 4.95sec and a GPU memory usage of 5.49 GB, our approach demonstrates significant potential for clinical research application.
Related papers
- Comparative Study of Probabilistic Atlas and Deep Learning Approaches for Automatic Brain Tissue Segmentation from MRI Using N4 Bias Field Correction and Anisotropic Diffusion Pre-processing Techniques [0.0]
This study provides a comparative analysis of various segmentation models, including Probabilistic ATLAS, U-Net, nnU-Net, and LinkNet.
Our results demonstrate that the 3D nnU-Net model outperforms others, achieving the highest mean Dice Coefficient score (0.937 + 0.012)
The findings highlight the superiority of nnU-Net models in brain tissue segmentation, particularly when combined with N4 Bias Field Correction and Anisotropic Diffusion pre-processing techniques.
arXiv Detail & Related papers (2024-11-08T10:07:03Z) - A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
Deep neural networks have shown great potential for reconstructing high-fidelity images from undersampled measurements.
Our model is based on neural operators, a discretization-agnostic architecture.
Our inference speed is also 1,400x faster than diffusion methods.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - N-BVH: Neural ray queries with bounding volume hierarchies [51.430495562430565]
In 3D computer graphics, the bulk of a scene's memory usage is due to polygons and textures.
We devise N-BVH, a neural compression architecture designed to answer arbitrary ray queries in 3D.
Our method provides faithful approximations of visibility, depth, and appearance attributes.
arXiv Detail & Related papers (2024-05-25T13:54:34Z) - Modality-Agnostic Variational Compression of Implicit Neural
Representations [96.35492043867104]
We introduce a modality-agnostic neural compression algorithm based on a functional view of data and parameterised as an Implicit Neural Representation (INR)
Bridging the gap between latent coding and sparsity, we obtain compact latent representations non-linearly mapped to a soft gating mechanism.
After obtaining a dataset of such latent representations, we directly optimise the rate/distortion trade-off in a modality-agnostic space using neural compression.
arXiv Detail & Related papers (2023-01-23T15:22:42Z) - Lossy compression of multidimensional medical images using sinusoidal
activation networks: an evaluation study [0.0]
We evaluate how neural networks with periodic activation functions can be leveraged to reliably compress large multidimensional medical image datasets.
We show how any given 4D dMRI dataset can be accurately represented through the parameters of a sinusoidal activation network.
Our results show that the proposed approach outperforms benchmark ReLU and Tanh activation perceptron architectures in terms of mean squared error, peak signal-to-noise ratio and structural similarity index.
arXiv Detail & Related papers (2022-08-02T17:16:33Z) - Hierarchical 3D Feature Learning for Pancreas Segmentation [11.588903060674344]
We propose a novel 3D fully convolutional deep network for automated pancreas segmentation from both MRI and CT scans.
Our model outperforms existing methods on CT pancreas segmentation, obtaining an average Dice score of about 88%.
Additional control experiments demonstrate that the achieved performance is due to the combination of our 3D fully-convolutional deep network and the hierarchical representation decoding.
arXiv Detail & Related papers (2021-09-03T09:27:07Z) - Automated Model Design and Benchmarking of 3D Deep Learning Models for
COVID-19 Detection with Chest CT Scans [72.04652116817238]
We propose a differentiable neural architecture search (DNAS) framework to automatically search for the 3D DL models for 3D chest CT scans classification.
We also exploit the Class Activation Mapping (CAM) technique on our models to provide the interpretability of the results.
arXiv Detail & Related papers (2021-01-14T03:45:01Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
We propose a Modified Pseudo-3D Feature Pyramid Network (MP3D FPN) to efficiently extract 3D context enhanced 2D features for universal lesion detection in CT slices.
With the novel pre-training method, the proposed MP3D FPN achieves state-of-the-art detection performance on the DeepLesion dataset.
The proposed 3D pre-trained weights can potentially be used to boost the performance of other 3D medical image analysis tasks.
arXiv Detail & Related papers (2020-12-16T07:11:16Z) - Fully Automatic Intervertebral Disc Segmentation Using Multimodal 3D
U-Net [12.619402990144922]
This paper proposes a novel convolutional framework based on 3D U-Net to segment IVDs from MRI images.
We first localize the centers of intervertebral discs in each spine sample and then train the network based on the cropped small volumes centered at the localized intervertebral discs.
arXiv Detail & Related papers (2020-09-28T18:58:24Z) - Enhancing Fiber Orientation Distributions using convolutional Neural
Networks [0.0]
We learn improved FODs for commercially acquired MRI.
We evaluate patch-based 3D convolutional neural networks (CNNs)
Our approach may enable robust CSD model estimation on single-shell dMRI acquisition protocols.
arXiv Detail & Related papers (2020-08-12T16:06:25Z) - 4D Spatio-Temporal Convolutional Networks for Object Position Estimation
in OCT Volumes [69.62333053044712]
3D convolutional neural networks (CNNs) have shown promising performance for pose estimation of a marker object using single OCT images.
We extend 3D CNNs to 4D-temporal CNNs to evaluate the impact of additional temporal information for marker object tracking.
arXiv Detail & Related papers (2020-07-02T12:02:20Z) - Towards Reading Beyond Faces for Sparsity-Aware 4D Affect Recognition [55.15661254072032]
We present a sparsity-aware deep network for automatic 4D facial expression recognition (FER)
We first propose a novel augmentation method to combat the data limitation problem for deep learning.
We then present a sparsity-aware deep network to compute the sparse representations of convolutional features over multi-views.
arXiv Detail & Related papers (2020-02-08T13:09:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.