Scalable Feedback Stabilization of Quantum Light Sources on a CMOS Chip
- URL: http://arxiv.org/abs/2411.05921v1
- Date: Fri, 08 Nov 2024 19:10:12 GMT
- Title: Scalable Feedback Stabilization of Quantum Light Sources on a CMOS Chip
- Authors: Danielius Kramnik, Imbert Wang, Anirudh Ramesh, Josep M. Fargas Cabanillas, Ðorđe Gluhović, Sidney Buchbinder, Panagiotis Zarkos, Christos Adamopoulos, Prem Kumar, Vladimir M. Stojanović, Miloš A. Popović,
- Abstract summary: Silicon photonics is a leading platform for realizing the vast numbers of physical qubits needed for useful quantum information processing.
A challenge to the practical operation and scale-up of silicon quantum-photonic integrated circuits is the need to control their extreme sensitivity to process and temperature variations.
Here, we demonstrate the first electronic-photonic quantum system-on-chip (EPQSoC) consisting of quantum-correlated photon-pair sources stabilized via on-chip feedback control circuits.
- Score: 2.091163184377087
- License:
- Abstract: Silicon photonics is a leading platform for realizing the vast numbers of physical qubits needed for useful quantum information processing because it leverages mature complementary metal-oxide-semiconductor (CMOS) manufacturing to integrate on-chip thousands of optical devices for generating and manipulating quantum states of light. A challenge to the practical operation and scale-up of silicon quantum-photonic integrated circuits, however, is the need to control their extreme sensitivity to process and temperature variations, free-carrier and self-heating nonlinearities, and thermal crosstalk. To date these challenges have been partially addressed using bulky off-chip electronics, sacrificing many benefits of a chip-scale platform. Here, we demonstrate the first electronic-photonic quantum system-on-chip (EPQSoC) consisting of quantum-correlated photon-pair sources stabilized via on-chip feedback control circuits, all fabricated in a high-volume 45nm CMOS microelectronics foundry. We use non-invasive photocurrent sensing in a tunable microring cavity photon-pair source to actively lock it to a fixed pump laser while operating in the quantum regime, enabling large scale microring-based quantum systems. In this first demonstration of such a capability, we achieve a high CAR of 134 with an ultra-low g(2)(0) of 0.021 at 2.2 kHz off-chip detected pair rate and 3.3 MHz/mW2 on-chip pair generation efficiency, and over 100 kHz off-chip detected pair rate at higher pump powers (1.5 MHz on-chip). These sources maintain stable quantum properties in the presence of temperature variations, operating reliably in practical settings with many adjacent devices creating thermal disturbances on the same chip. Such dense electronic-photonic integration enables implementation and control of quantum-photonic systems at the scale required for useful quantum information processing with CMOS-fabricated chips.
Related papers
- All-optical modulation with single-photons using electron avalanche [69.65384453064829]
We demonstrate all-optical modulation using a beam with single-photon intensity.
Our approach opens up the possibility of terahertz-speed optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - Erbium emitters in commercially fabricated nanophotonic silicon
waveguides [0.0]
We show that erbium dopants can be reliably integrated into commercially fabricated low-loss waveguides.
Our findings are an important step towards long-lived quantum memories that can be fabricated on a wafer-scale.
arXiv Detail & Related papers (2023-07-26T07:58:05Z) - Tunable quantum emitters on large-scale foundry silicon photonics [0.6165122427320179]
Integration of atomic quantum systems with single-emitter tunability remains an open challenge.
Here, we overcome this barrier through the hybrid integration of multiple InAs/InP microchiplets containing high-brightness infrared semiconductor quantum dot single photon emitters.
We achieve single photon emission via resonance fluorescence and scalable emission wavelength tunability through an electrically controlled non-volatile memory.
arXiv Detail & Related papers (2023-06-10T15:04:30Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
Frequency conversion between microwave and optical photons is a key enabling technology to create links between superconducting quantum processors.
We propose a microwave-optical platform based on long-coherence-time superconducting radio-frequency (SRF) cavities.
We show that the fidelity of heralded entanglement generation between two remote quantum systems is enhanced by the low microwave losses.
arXiv Detail & Related papers (2022-06-30T17:57:37Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Near-Field Terahertz Nanoscopy of Coplanar Microwave Resonators [61.035185179008224]
Superconducting quantum circuits are one of the leading quantum computing platforms.
To advance superconducting quantum computing to a point of practical importance, it is critical to identify and address material imperfections that lead to decoherence.
Here, we use terahertz Scanning Near-field Optical Microscopy to probe the local dielectric properties and carrier concentrations of wet-etched aluminum resonators on silicon.
arXiv Detail & Related papers (2021-06-24T11:06:34Z) - Room temperature single-photon emitters in silicon nitride [97.75917079876487]
We report on the first-time observation of room-temperature single-photon emitters in silicon nitride (SiN) films grown on silicon dioxide substrates.
As SiN has recently emerged as one of the most promising materials for integrated quantum photonics, the proposed platform is suitable for scalable fabrication of quantum on-chip devices.
arXiv Detail & Related papers (2021-04-16T14:20:11Z) - Reconfigurable quantum photonics with on-chip detectors [0.0]
We show low-power microelectromechanical reconfiguration of integrated photonic circuits interfaced with superconducting single-photon detectors on the same chip.
Our platform enables heat-load free reconfigurable linear optics and adaptive control, critical for quantum state preparation and quantum logic.
arXiv Detail & Related papers (2020-07-13T15:11:34Z) - Coupling colloidal quantum dots to gap waveguides [62.997667081978825]
coupling between single photon emitters and integrated photonic circuits is an emerging topic relevant for quantum information science and other nanophotonic applications.
We investigate the coupling between a hybrid system of colloidal quantum dots and propagating gap modes of a silicon nitride waveguide system.
arXiv Detail & Related papers (2020-03-30T21:18:27Z) - Converting microwave and telecom photons with a silicon photonic
nanomechanical interface [0.0]
We demonstrate a fully integrated, coherent transducer connecting the microwave X and the telecom S bands.
The device is fabricated from CMOS compatible materials and achieves a V$_pi$ as low as 16 $mu$V for sub-watt pump powers.
Such power-efficient, ultra-sensitive and highly integrated hybrid interconnects might find applications ranging from quantum communication and RF receivers to magnetic resonance imaging.
arXiv Detail & Related papers (2020-02-26T17:10:39Z) - Integrated multi-wavelength control of an ion qubit [0.0]
Monolithic integration of control technologies for atomic systems is a promising route to the development of quantum computers and portable quantum sensors.
Here we demonstrate a surface-electrode ion-trap chip using integrated waveguides and grating couplers.
Laser light from violet to infrared is coupled onto the chip via an optical-fiber array, creating an inherently stable optical path.
arXiv Detail & Related papers (2020-01-14T21:23:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.