論文の概要: Assessing Foundational Medical 'Segment Anything' (Med-SAM1, Med-SAM2) Deep Learning Models for Left Atrial Segmentation in 3D LGE MRI
- arxiv url: http://arxiv.org/abs/2411.05963v1
- Date: Fri, 08 Nov 2024 20:49:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:10:59.046081
- Title: Assessing Foundational Medical 'Segment Anything' (Med-SAM1, Med-SAM2) Deep Learning Models for Left Atrial Segmentation in 3D LGE MRI
- Title(参考訳): Med-SAM1, Med-SAM2) 3D LGE MRIにおける左心房分節の深部学習モデルの検討
- Authors: Mehri Mehrnia, Mohamed Elbayumi, Mohammed S. M. Elbaz,
- Abstract要約: 心房細動(AF)は心不整脈の最も一般的な疾患であり、心不全や脳卒中と関連している。
多様なデータセットで事前トレーニングされたSegment Anything Model(SAM)のようなディープラーニングモデルは、ジェネリックセグメンテーションタスクにおいて有望であることを示している。
MedSAMモデルの可能性にもかかわらず、3D LGE-MRIにおけるLAセグメンテーションの複雑なタスクについてはまだ評価されていない。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Atrial fibrillation (AF), the most common cardiac arrhythmia, is associated with heart failure and stroke. Accurate segmentation of the left atrium (LA) in 3D late gadolinium-enhanced (LGE) MRI is helpful for evaluating AF, as fibrotic remodeling in the LA myocardium contributes to arrhythmia and serves as a key determinant of therapeutic strategies. However, manual LA segmentation is labor-intensive and challenging. Recent foundational deep learning models, such as the Segment Anything Model (SAM), pre-trained on diverse datasets, have demonstrated promise in generic segmentation tasks. MedSAM, a fine-tuned version of SAM for medical applications, enables efficient, zero-shot segmentation without domain-specific training. Despite the potential of MedSAM model, it has not yet been evaluated for the complex task of LA segmentation in 3D LGE-MRI. This study aims to (1) evaluate the performance of MedSAM in automating LA segmentation, (2) compare the performance of the MedSAM2 model, which uses a single prompt with automated tracking, with the MedSAM1 model, which requires separate prompt for each slice, and (3) analyze the performance of MedSAM1 in terms of Dice score(i.e., segmentation accuracy) by varying the size and location of the box prompt.
- Abstract(参考訳): 心房細動(AF)は心不全や脳卒中と関連している。
3D後期ガドリニウム造影(LGE)MRIにおける左房(LA)の正確な分画は、LA心筋の線維的リモデリングが不整脈に寄与し、治療戦略の重要な決定要因となるため、AFを評価するのに有用である。
しかし、手動のLAセグメンテーションは労働集約的で困難である。
多様なデータセットで事前訓練されたSegment Anything Model(SAM)のような最近の基礎的なディープラーニングモデルは、ジェネリックセグメンテーションタスクにおいて有望であることを示している。
医療応用のためのSAMの微調整版であるMedSAMは、ドメイン固有のトレーニングなしで、効率的でゼロショットのセグメンテーションを可能にする。
MedSAMモデルの可能性にもかかわらず、3D LGE-MRIにおけるLAセグメンテーションの複雑なタスクについてはまだ評価されていない。
本研究の目的は, LAセグメンテーションの自動化におけるMedSAMの性能を評価すること, 2) 自動トラッキングを伴う単一プロンプトを用いたMedSAM2モデルと, 各スライス毎に個別のプロンプトを必要とするMedSAM1モデルを比較し, (3) ボックスプロンプトのサイズと位置を変化させることで, MedSAM1の性能を分析することである。
関連論文リスト
- Novel adaptation of video segmentation to 3D MRI: efficient zero-shot knee segmentation with SAM2 [1.6237741047782823]
Segment Anything Model 2 を応用した3次元膝関節MRIのゼロショット単発セグメンテーション法を提案する。
3次元医用ボリュームのスライスを個々のビデオフレームとして扱うことで、SAM2の高度な能力を利用して、モーションおよび空間認識の予測を生成する。
SAM2は、訓練や微調整を伴わずに、ゼロショット方式でセグメント化タスクを効率的に実行できることを実証する。
論文 参考訳(メタデータ) (2024-08-08T21:39:15Z) - Path-SAM2: Transfer SAM2 for digital pathology semantic segmentation [6.721564277355789]
Path-SAM2はSAM2モデルに初めて適応し,病的セマンティックセグメンテーションの課題に適応する。
病理組織学における最大の事前学習型視覚エンコーダ(UNI)とオリジナルのSAM2エンコーダを統合し,病理学に基づく事前知識を付加する。
3つの腺腫の病理データセットにおいて、Path-SAM2は最先端のパフォーマンスを達成した。
論文 参考訳(メタデータ) (2024-08-07T09:30:51Z) - MedCLIP-SAM: Bridging Text and Image Towards Universal Medical Image Segmentation [2.2585213273821716]
本稿では,CLIPモデルとSAMモデルを組み合わせて臨床スキャンのセグメンテーションを生成する新しいフレームワーク MedCLIP-SAM を提案する。
3つの多様なセグメンテーションタスクと医用画像モダリティを広範囲にテストすることにより、提案手法は優れた精度を示した。
論文 参考訳(メタデータ) (2024-03-29T15:59:11Z) - MA-SAM: Modality-agnostic SAM Adaptation for 3D Medical Image
Segmentation [58.53672866662472]
我々はMA-SAMと命名されたモダリティに依存しないSAM適応フレームワークを提案する。
本手法は,重量増加のごく一部だけを更新するためのパラメータ効率の高い微調整戦略に根ざしている。
画像エンコーダのトランスバータブロックに一連の3Dアダプタを注入することにより,事前学習した2Dバックボーンが入力データから3次元情報を抽出することができる。
論文 参考訳(メタデータ) (2023-09-16T02:41:53Z) - SurgicalSAM: Efficient Class Promptable Surgical Instrument Segmentation [65.52097667738884]
そこで本研究では,SAMの知識と外科的特異的情報を統合し,汎用性を向上させるための,新しいエンドツーエンドの効率的なチューニング手法であるScientialSAMを紹介した。
具体的には,タイピングのための軽量なプロトタイプベースクラスプロンプトエンコーダを提案し,クラスプロトタイプから直接プロンプト埋め込みを生成する。
また,手術器具カテゴリー間のクラス間差異の低さに対応するために,コントラッシブなプロトタイプ学習を提案する。
論文 参考訳(メタデータ) (2023-08-17T02:51:01Z) - Medical SAM Adapter: Adapting Segment Anything Model for Medical Image
Segmentation [51.770805270588625]
Segment Anything Model (SAM)は画像セグメンテーションの分野で最近人気を集めている。
近年の研究では、SAMは医用画像のセグメンテーションにおいて過小評価されている。
ドメイン固有の医療知識をセグメンテーションモデルに組み込んだ医療SAMアダプタ(Med-SA)を提案する。
論文 参考訳(メタデータ) (2023-04-25T07:34:22Z) - Segment Anything Model for Medical Image Analysis: an Experimental Study [19.95972201734614]
Segment Anything Model (SAM) は、ユーザ定義オブジェクトをインタラクティブな方法でセグメント化する基礎モデルである。
SAMの医用画像の分類能力について,各種のモダリティと解剖から,19の医用画像データセットの集合体を用いて評価した。
論文 参考訳(メタデータ) (2023-04-20T17:50:18Z) - MyoPS: A Benchmark of Myocardial Pathology Segmentation Combining
Three-Sequence Cardiac Magnetic Resonance Images [84.02849948202116]
本研究は,MyoPS(MyoPS)の医療画像解析における新たな課題を定義するものである。
myoPSは、MICCAI 2020とともにMyoPSチャレンジで最初に提案された3シーケンスの心臓磁気共鳴(CMR)画像を組み合わせている。
この課題は45対のCMR画像と予め整列されたCMR画像を提供し、アルゴリズムは3つのCMRシーケンスから補完的な情報を結合して病理領域を分割することを可能にする。
論文 参考訳(メタデータ) (2022-01-10T06:37:23Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
本研究の目的は,LGE-MRIを用いた心筋境界領域の深部学習モデルに基づく正確な自動セグメンテーション法を開発することである。
合計320回の試験(平均6回の試験)と28回の試験が行われた。
ベーススライスとミドルスライスにおけるアンサンブルモデルの性能解析は, サーバ内調査と同等であり, アトピーススライスではわずかに低かった。
論文 参考訳(メタデータ) (2020-05-27T20:44:38Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
現在世界最大の心臓LGE-MRIデータセットである154個の3D LGE-MRIを用いた「2018 left Atrium Challenge」。
技術および生物学的指標を用いた提案アルゴリズムの解析を行った。
その結果, 最上部法は93.2%, 平均表面は0.7mmであった。
論文 参考訳(メタデータ) (2020-04-26T08:49:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。