論文の概要: Mutual-energy inner product optimization method for constructing feature coordinates and image classification in Machine Learning
- arxiv url: http://arxiv.org/abs/2411.06100v1
- Date: Sat, 09 Nov 2024 07:26:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:12:06.473664
- Title: Mutual-energy inner product optimization method for constructing feature coordinates and image classification in Machine Learning
- Title(参考訳): 機械学習における特徴座標と画像分類のための相互エネルギー内積最適化法
- Authors: Yuanxiu Wang,
- Abstract要約: 本稿では,機能座標系を構築するための相互エネルギー内積最適化手法を提案する。
相互エネルギー内積を一連の固有関数として表現することにより、低周波特性を増強する大きな利点を示す。
最適化モデルを解くために、安定かつ効率的な逐次線形化アルゴリズムを構築した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: As a key task in machine learning, data classification is essentially to find a suitable coordinate system to represent data features of different classes of samples. This paper proposes the mutual-energy inner product optimization method for constructing a feature coordinate system. First, by analyzing the solution space and eigenfunctions of partial differential equations describing a non-uniform membrane, the mutual-energy inner product is defined. Second, by expressing the mutual-energy inner product as a series of eigenfunctions, it shows a significant advantage of enhancing low-frequency features and suppressing high-frequency noise, compared with the Euclidean inner product. And then, a mutual-energy inner product optimization model is built to extract data features, and convexity and concavity properties of its objective function are discussed. Next, by combining the finite element method, a stable and efficient sequential linearization algorithm is constructed to solve the optimization model. This algorithm only solves equations including positive definite symmetric matrix and linear programming with a few constraints, and its vectorized implementation is discussed. Finally, the mutual-energy inner product optimization method is used to construct feature coordinates, and multi-class Gaussian classifiers are trained on the MINST training set. Good prediction results of Gaussian classifiers are achieved on the MINST test set.
- Abstract(参考訳): 機械学習における重要なタスクとして、データ分類は基本的に、異なるクラスのサンプルのデータ特徴を表現するのに適した座標系を見つけることである。
本稿では,機能座標系を構築するための相互エネルギー内積最適化手法を提案する。
まず、非一様膜を記述する偏微分方程式の解空間と固有関数を解析することにより、相互エネルギー内積を定義する。
第二に、相互エネルギー内積を一連の固有関数として表現することにより、ユークリッド内積と比較して低周波特性を高め、高周波ノイズを抑制するという大きな利点を示す。
そして、データ特徴を抽出するために相互エネルギー内積最適化モデルを構築し、その目的関数の凸性と凹凸性について論じる。
次に、有限要素法を組み合わせることにより、最適化モデルを解くために、安定かつ効率的な逐次線形化アルゴリズムを構築する。
このアルゴリズムは、正定値対称行列や線形プログラミングを含む方程式をいくつかの制約で解き、そのベクトル化実装について議論する。
最後に、相互エネルギー内積最適化法を用いて特徴座標を構築し、MINSTトレーニングセット上で多クラスガウス分類器を訓練する。
MINSTテストセット上でガウス分類器のよい予測結果が得られた。
関連論文リスト
- Operator SVD with Neural Networks via Nested Low-Rank Approximation [19.562492156734653]
本稿では, トラッピング特異値分解の低ランク近似に基づく新しい最適化フレームワークを提案する。
最上位の$L$特異値と特異関数を正しい順序で学習するためのエンフェンシングと呼ばれる新しい手法。
本稿では,計算物理学と機械学習のユースケースに対する提案手法の有効性を実証する。
論文 参考訳(メタデータ) (2024-02-06T03:06:06Z) - Sample Complexity for Quadratic Bandits: Hessian Dependent Bounds and
Optimal Algorithms [64.10576998630981]
最適なヘッセン依存型サンプルの複雑さを, 初めて厳密に評価した。
ヘシアン非依存のアルゴリズムは、すべてのヘシアンインスタンスに対して最適なサンプル複雑さを普遍的に達成する。
本アルゴリズムにより得られたサンプルの最適複雑さは,重み付き雑音分布においても有効である。
論文 参考訳(メタデータ) (2023-06-21T17:03:22Z) - Structured model selection via $\ell_1-\ell_2$ optimization [1.933681537640272]
構造化力学系を同定する学習手法を開発した。
候補関数の集合が有界系を成すとき、その回復は安定で有界であることを示す。
論文 参考訳(メタデータ) (2023-05-27T12:51:26Z) - An inexact LPA for DC composite optimization and application to matrix completions with outliers [5.746154410100363]
本稿では,複合最適化問題のクラスについて述べる。
合成構造を利用することで、ポテンシャル関数が反復列において1/2$のKL特性を持つ条件を与える。
論文 参考訳(メタデータ) (2023-03-29T16:15:34Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
本稿では,完全合成最適化問題を凸コンパクト集合で解くための一階アルゴリズムについて検討する。
微分可能および非微分可能を別々に扱い、滑らかな部分のみを線形化することで目的の構造を利用する。
論文 参考訳(メタデータ) (2023-02-24T18:41:48Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
木アンサンブルはアルゴリズムチューニングやニューラルアーキテクチャ検索といったブラックボックス最適化タスクに適している。
ブラックボックス最適化にツリーアンサンブルを使うことの2つのよく知られた課題は、探索のためのモデル不確実性を効果的に定量化し、また、 (ii) ピースワイドな定値取得関数を最適化することである。
我々のフレームワークは、連続/離散的機能に対する非拘束ブラックボックス最適化のための最先端の手法と同様に、混合変数の特徴空間と既知の入力制約を組み合わせた問題の競合する手法よりも優れている。
論文 参考訳(メタデータ) (2022-07-02T16:59:37Z) - Optimal prediction for kernel-based semi-functional linear regression [5.827901300943599]
半関数線形モデルにおける予測のための収束の最小値を求める。
その結果, よりスムーズな関数成分は, 非パラメトリック成分が知られているようなミニマックス速度で学習できることが判明した。
論文 参考訳(メタデータ) (2021-10-29T04:55:44Z) - On the Efficient Implementation of the Matrix Exponentiated Gradient
Algorithm for Low-Rank Matrix Optimization [26.858608065417663]
スペクトル上の凸最適化は、機械学習、信号処理、統計学に重要な応用がある。
低ランク行列による最適化に適したMEGの効率的な実装を提案し、各イテレーションで単一の低ランクSVDのみを使用する。
また,本手法の正しい収束のための効率よく計算可能な証明書も提供する。
論文 参考訳(メタデータ) (2020-12-18T19:14:51Z) - Sequential Subspace Search for Functional Bayesian Optimization
Incorporating Experimenter Intuition [63.011641517977644]
本アルゴリズムは,実験者のガウス過程から引き出された一組の引き数で区切られた関数空間の有限次元ランダム部分空間列を生成する。
標準ベイズ最適化は各部分空間に適用され、次の部分空間の出発点(オリジン)として用いられる最良の解である。
シミュレーションおよび実世界の実験,すなわちブラインド関数マッチング,アルミニウム合金の最適析出強化関数の探索,深層ネットワークの学習速度スケジュール最適化において,本アルゴリズムを検証した。
論文 参考訳(メタデータ) (2020-09-08T06:54:11Z) - Multi-View Spectral Clustering with High-Order Optimal Neighborhood
Laplacian Matrix [57.11971786407279]
マルチビュースペクトルクラスタリングは、データ間の固有のクラスタ構造を効果的に明らかにすることができる。
本稿では,高次最適近傍ラプラシア行列を学習するマルチビュースペクトルクラスタリングアルゴリズムを提案する。
提案アルゴリズムは, 1次ベースと高次ベースの両方の線形結合の近傍を探索し, 最適ラプラシア行列を生成する。
論文 参考訳(メタデータ) (2020-08-31T12:28:40Z) - Clustering Binary Data by Application of Combinatorial Optimization
Heuristics [52.77024349608834]
本稿では,2値データのクラスタリング手法について検討し,まず,クラスタのコンパクトさを計測するアグリゲーション基準を定義した。
近隣地域と人口動態最適化メタヒューリスティックスを用いた5つの新しいオリジナル手法が導入された。
準モンテカルロ実験によって生成された16のデータテーブルから、L1の相似性と階層的クラスタリング、k-means(メドイドやPAM)の1つのアグリゲーションの比較を行う。
論文 参考訳(メタデータ) (2020-01-06T23:33:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。