論文の概要: From References to Insights: Collaborative Knowledge Minigraph Agents for Automating Scholarly Literature Review
- arxiv url: http://arxiv.org/abs/2411.06159v1
- Date: Sat, 09 Nov 2024 12:06:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:08:41.161507
- Title: From References to Insights: Collaborative Knowledge Minigraph Agents for Automating Scholarly Literature Review
- Title(参考訳): 文献レビューの自動化のための協調的知識ミニグラフエージェント
- Authors: Zhi Zhang, Yan Liu, Sheng-hua Zhong, Gong Chen, Yu Yang, Jiannong Cao,
- Abstract要約: 本稿では,学術文献レビューの自動化を目的とした,共同知識ミニグラフエージェント(CKMA)を提案する。
新たなプロンプトベースのアルゴリズムである知識ミニグラフ構築エージェント(KMCA)は、学術文献から情報片間の関係を識別するように設計されている。
構築された知識ミニグラフにおける大規模言語モデルの能力を活用することにより、多経路要約エージェント(MPSA)は、異なる視点から情報や関係を効率的に整理し、文献レビュー段落を生成する。
- 参考スコア(独自算出の注目度): 22.80918934436901
- License:
- Abstract: Literature reviews play a crucial role in scientific research for understanding the current state of research, identifying gaps, and guiding future studies on specific topics. However, the process of conducting a comprehensive literature review is yet time-consuming. This paper proposes a novel framework, collaborative knowledge minigraph agents (CKMAs), to automate scholarly literature reviews. A novel prompt-based algorithm, the knowledge minigraph construction agent (KMCA), is designed to identify relationships between information pieces from academic literature and automatically constructs knowledge minigraphs. By leveraging the capabilities of large language models on constructed knowledge minigraphs, the multiple path summarization agent (MPSA) efficiently organizes information pieces and relationships from different viewpoints to generate literature review paragraphs. We evaluate CKMAs on three benchmark datasets. Experimental results demonstrate that the proposed techniques generate informative, complete, consistent, and insightful summaries for different research problems, promoting the use of LLMs in more professional fields.
- Abstract(参考訳): 文献レビューは、研究の現状を理解し、ギャップを特定し、特定のトピックについて将来の研究を導くために、科学研究において重要な役割を担っている。
しかし、総合的な文献レビューの実施にはまだ時間がかかる。
本稿では,学術文献レビューの自動化を目的とした,共同知識ミニグラフエージェント(CKMA)を提案する。
新たなプロンプトベースのアルゴリズムである知識ミニグラフ構築エージェント(KMCA)は、学術文献から情報片間の関係を識別し、知識ミニグラフを自動的に構築するように設計されている。
構築された知識ミニグラフにおける大規模言語モデルの能力を活用することにより、多経路要約エージェント(MPSA)は、異なる視点から情報や関係を効率的に整理し、文献レビュー段落を生成する。
CKMAを3つのベンチマークデータセットで評価する。
実験の結果, 提案手法は様々な研究課題に対して, 情報的, 完全, 一貫性, 洞察に富んだ要約を生成し, より専門的な分野における LLM の利用を促進することが示唆された。
関連論文リスト
- KARMA: Leveraging Multi-Agent LLMs for Automated Knowledge Graph Enrichment [1.688134675717698]
KARMAは、構造化されていないテキストの構造解析を通じて知識の豊か化を自動化するために、多エージェントの大規模言語モデル(LLM)を利用する新しいフレームワークである。
このアプローチでは、エンティティ発見、関係抽出、スキーマアライメント、コンフリクト解決の9つの協調エージェントを使用します。
3つの異なるドメインから1200のPubMedの記事に対する実験は、知識グラフの富化におけるKARMAの有効性を実証している。
論文 参考訳(メタデータ) (2025-02-10T13:51:36Z) - Automating Bibliometric Analysis with Sentence Transformers and Retrieval-Augmented Generation (RAG): A Pilot Study in Semantic and Contextual Search for Customized Literature Characterization for High-Impact Urban Research [2.1728621449144763]
文献分析は、都市科学における研究動向、スコープ、影響を理解するために不可欠である。
キーワード検索に依存する伝統的な手法は、記事のタイトルやキーワードに明記されていない価値ある洞察を明らかにするのに失敗することが多い。
我々は、生成AIモデル、特にトランスフォーマーとレトリーバル拡張生成(RAG)を活用して、バイオロメトリ分析の自動化と強化を行う。
論文 参考訳(メタデータ) (2024-10-08T05:13:27Z) - Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
検索エンハンスメントは機械学習(ML)の幅広い範囲に拡張できる
この研究は、MLの様々な領域の文献を、現在の文献から欠落している一貫した表記で合成することで、このパラダイムの正式なフレームワークであるRetrieval-Enhanced Machine Learning (REML)を導入する。
本研究の目的は、様々な分野の研究者に対して、検索強化モデルの包括的、正式に構造化された枠組みを付与し、学際的な将来の研究を促進することである。
論文 参考訳(メタデータ) (2024-07-17T20:01:21Z) - Systematic Task Exploration with LLMs: A Study in Citation Text Generation [63.50597360948099]
大規模言語モデル(LLM)は、複雑な創造的自然言語生成(NLG)タスクの定義と実行において、前例のない柔軟性をもたらす。
本稿では,系統的な入力操作,参照データ,出力測定からなる3成分研究フレームワークを提案する。
我々はこのフレームワークを用いて引用テキスト生成を探索する。これは一般的なNLPタスクであり、タスク定義と評価基準に関するコンセンサスを欠いている。
論文 参考訳(メタデータ) (2024-07-04T16:41:08Z) - ResearchAgent: Iterative Research Idea Generation over Scientific Literature with Large Language Models [56.08917291606421]
ResearchAgentは、新しい作品のアイデアと運用のためのAIベースのシステムである。
ResearchAgentは、新しい問題を自動で定義し、手法と設計実験を提案し、繰り返し修正する。
我々は、複数の分野にわたる科学論文に関するResearchAgentを実験的に検証した。
論文 参考訳(メタデータ) (2024-04-11T13:36:29Z) - A Literature Review of Literature Reviews in Pattern Analysis and Machine Intelligence [55.33653554387953]
パターン分析とマシンインテリジェンス(PAMI)は、情報の収集と断片化を目的とした多くの文献レビューにつながっている。
本稿では、PAMI分野におけるこれらの文献レビューの徹底的な分析について述べる。
1)PAMI文献レビューの構造的・統計的特徴は何か,(2)レビューの増大するコーパスを効率的にナビゲートするために研究者が活用できる戦略は何か,(3)AIが作成したレビューの利点と限界は人間によるレビューと比較するとどのようなものか,という3つの主要な研究課題に対処しようとする。
論文 参考訳(メタデータ) (2024-02-20T11:28:50Z) - A Reliable Knowledge Processing Framework for Combustion Science using
Foundation Models [0.0]
この研究は、多様な燃焼研究データを処理し、実験研究、シミュレーション、文献にまたがるアプローチを導入している。
開発されたアプローチは、データのプライバシと精度を最適化しながら、計算と経済の費用を最小化する。
このフレームワークは、最小限の人間の監視で、常に正確なドメイン固有の応答を提供する。
論文 参考訳(メタデータ) (2023-12-31T17:15:25Z) - Investigating Fairness Disparities in Peer Review: A Language Model
Enhanced Approach [77.61131357420201]
我々は、大規模言語モデル(LM)の助けを借りて、ピアレビューにおける公平性格差の徹底した厳密な研究を行う。
我々は、2017年から現在までのICLR(International Conference on Learning Representations)カンファレンスで、包括的なリレーショナルデータベースを収集、組み立て、維持しています。
我々は、著作者性別、地理、著作者、機関的名声など、興味のある複数の保護属性に対する公平性の違いを仮定し、研究する。
論文 参考訳(メタデータ) (2022-11-07T16:19:42Z) - Embedding Knowledge for Document Summarization: A Survey [66.76415502727802]
従来の研究は、知識を組み込んだ文書要約器が優れた消化器を生成するのに優れていたことを証明した。
本稿では,文書要約ビューに基づいて,知識と知識の埋め込みを再カプセル化する手法を提案する。
論文 参考訳(メタデータ) (2022-04-24T04:36:07Z) - Enhancing Identification of Structure Function of Academic Articles
Using Contextual Information [6.28532577139029]
本稿では,学術論文の構造的機能を明らかにするためのコーパスとして,ACLカンファレンスの記事を取り上げる。
従来の機械学習モデルとディープラーニングモデルを用いて、様々な特徴入力に基づいて分類器を構築する。
2) に触発された本論文は,ディープラーニングモデルに文脈情報を導入し,重要な結果を得た。
論文 参考訳(メタデータ) (2021-11-28T11:21:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。