論文の概要: Variational Bayes Portfolio Construction
- arxiv url: http://arxiv.org/abs/2411.06192v1
- Date: Sat, 09 Nov 2024 14:23:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:08:43.156137
- Title: Variational Bayes Portfolio Construction
- Title(参考訳): 変量ベイズポートフォリオの構築
- Authors: Nicolas Nguyen, James Ridgway, Claire Vernade,
- Abstract要約: ベイズパラダイムにおける最適意思決定の問題に取り組む。
私たちはそれをサドルポイント問題として書き直した。
我々はその結果を最先端のアルゴリズムと比較した。
- 参考スコア(独自算出の注目度): 4.543162447338067
- License:
- Abstract: Portfolio construction is the science of balancing reward and risk; it is at the core of modern finance. In this paper, we tackle the question of optimal decision-making within a Bayesian paradigm, starting from a decision-theoretic formulation. Despite the inherent intractability of the optimal decision in any interesting scenarios, we manage to rewrite it as a saddle-point problem. Leveraging the literature on variational Bayes (VB), we propose a relaxation of the original problem. This novel methodology results in an efficient algorithm that not only performs well but is also provably convergent. Furthermore, we provide theoretical results on the statistical consistency of the resulting decision with the optimal Bayesian decision. Using real data, our proposal significantly enhances the speed and scalability of portfolio selection problems. We benchmark our results against state-of-the-art algorithms, as well as a Monte Carlo algorithm targeting the optimal decision.
- Abstract(参考訳): ポートフォリオの構築は報酬とリスクのバランスをとる科学であり、現代の金融の中核にある。
本稿では,決定理論の定式化から始まるベイズパラダイムにおける最適意思決定問題に取り組む。
興味深いシナリオでは、最適な決定が本質的に難解であるにも関わらず、私たちはそれをサドルポイント問題として書き直すことに成功しました。
本稿では,変分ベイズ(VB)に関する文献を参考に,元の問題を緩和することを提案する。
この新しい手法は、効率よく機能するだけでなく、証明可能な収束性を持つ効率的なアルゴリズムをもたらす。
さらに、得られた決定と最適なベイズ決定との統計的整合性に関する理論的結果を提供する。
提案手法は,実データを用いてポートフォリオ選択問題の高速化とスケーラビリティを著しく向上させる。
我々は、最先端のアルゴリズムと最適決定をターゲットとしたモンテカルロアルゴリズムとをベンチマークする。
関連論文リスト
- Model-Based Epistemic Variance of Values for Risk-Aware Policy Optimization [59.758009422067]
モデルベース強化学習における累積報酬に対する不確実性を定量化する問題を考察する。
我々は、解が値の真後分散に収束する新しい不確実性ベルマン方程式(UBE)を提案する。
本稿では,リスク・サーキングとリスク・アバース・ポリシー最適化のいずれにも適用可能な汎用ポリシー最適化アルゴリズムQ-Uncertainty Soft Actor-Critic (QU-SAC)を導入する。
論文 参考訳(メタデータ) (2023-12-07T15:55:58Z) - Efficient Learning of Decision-Making Models: A Penalty Block Coordinate
Descent Algorithm for Data-Driven Inverse Optimization [12.610576072466895]
我々は、意思決定プロセスを明らかにするために、事前の意思決定データを使用する逆問題を考える。
この統計的学習問題は、データ駆動逆最適化と呼ばれる。
そこで本稿では,大規模問題を解くために,効率的なブロック座標降下に基づくアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-10-27T12:52:56Z) - Generalizing Bayesian Optimization with Decision-theoretic Entropies [102.82152945324381]
統計的決定論の研究からシャノンエントロピーの一般化を考える。
まず,このエントロピーの特殊なケースがBO手順でよく用いられる獲得関数に繋がることを示す。
次に、損失に対する選択肢の選択が、どのようにして柔軟な獲得関数の族をもたらすかを示す。
論文 参考訳(メタデータ) (2022-10-04T04:43:58Z) - Post-hoc loss-calibration for Bayesian neural networks [25.05373000435213]
本研究では, 近似的後続予測分布の補正手法を開発し, 高ユーティリティな意思決定を推奨する。
従来の研究とは対照的に、我々のアプローチは近似推論アルゴリズムの選択に非依存である。
論文 参考訳(メタデータ) (2021-06-13T13:53:27Z) - Navigating to the Best Policy in Markov Decision Processes [68.8204255655161]
マルコフ決定過程における純粋探索問題について検討する。
エージェントはアクションを逐次選択し、結果のシステム軌道から可能な限り早くベストを目標とする。
論文 参考訳(メタデータ) (2021-06-05T09:16:28Z) - Bayesian Optimisation for Constrained Problems [0.0]
本稿では,制約を扱える知恵グラディエント獲得関数の新たな変種を提案する。
我々は、このアルゴリズムを、他の4つの最先端制約されたベイズ最適化アルゴリズムと比較し、その優れた性能を実証する。
論文 参考訳(メタデータ) (2021-05-27T15:43:09Z) - On the Optimality of Batch Policy Optimization Algorithms [106.89498352537682]
バッチポリシー最適化は、環境と対話する前に既存のデータをポリシー構築に活用することを検討する。
信頼調整インデックスアルゴリズムは楽観的,悲観的,中立的いずれであってもミニマックス最適であることを示す。
最適値予測の本来の難易度を考慮した新しい重み付き最小値基準を提案する。
論文 参考訳(メタデータ) (2021-04-06T05:23:20Z) - Algorithmic Challenges in Ensuring Fairness at the Time of Decision [6.228560624452748]
社会的文脈におけるアルゴリズムによる意思決定は、帯域幅フィードバックの下で最適化される。
最近の訴訟は、アルゴリズムによる価格設定の慣行を展開している企業を非難している。
凸最適化の文脈において、遠心自由というよく研究された公正性の概念を導入する。
論文 参考訳(メタデータ) (2021-03-16T19:06:28Z) - Stein Variational Model Predictive Control [130.60527864489168]
不確実性の下での意思決定は、現実の自律システムにとって極めて重要である。
モデル予測制御 (MPC) 法は, 複雑な分布を扱う場合, 適用範囲が限られている。
この枠組みが、挑戦的で非最適な制御問題における計画の成功に繋がることを示す。
論文 参考訳(メタデータ) (2020-11-15T22:36:59Z) - Large-Scale Methods for Distributionally Robust Optimization [53.98643772533416]
我々のアルゴリズムは、トレーニングセットのサイズとパラメータの数によらず、多くの評価勾配を必要とすることを証明している。
MNIST と ImageNet の実験により,本手法の 9-36 倍の効率性を持つアルゴリズムの理論的スケーリングが確認された。
論文 参考訳(メタデータ) (2020-10-12T17:41:44Z) - Tightly Robust Optimization via Empirical Domain Reduction [22.63829081634384]
提案手法は,解が良好な目的値を持つようなスケールを決定するアルゴリズムである。
いくつかの規則性条件下では、我々のアルゴリズムで得られるスケールは$O(sqrtn)$、標準アプローチで得られるスケールは$O(sqrtd/n)$である。
論文 参考訳(メタデータ) (2020-02-29T12:24:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。