論文の概要: Golden Touchstone: A Comprehensive Bilingual Benchmark for Evaluating Financial Large Language Models
- arxiv url: http://arxiv.org/abs/2411.06272v1
- Date: Sat, 09 Nov 2024 20:09:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:08:40.637829
- Title: Golden Touchstone: A Comprehensive Bilingual Benchmark for Evaluating Financial Large Language Models
- Title(参考訳): Golden Touchstone: 金融大規模言語モデルを評価するための総合的バイリンガルベンチマーク
- Authors: Xiaojun Wu, Junxi Liu, Huanyi Su, Zhouchi Lin, Yiyan Qi, Chengjin Xu, Jiajun Su, Jiajie Zhong, Fuwei Wang, Saizhuo Wang, Fengrui Hua, Jia Li, Jian Guo,
- Abstract要約: ゴールドタッチストーン(Golden Touchstone)は、金融用LLMの最初の総合的なバイリンガルベンチマークである。
ベンチマークには、モデルの言語理解と生成能力を徹底的に評価することを目的とした、さまざまな財務タスクが含まれている。
Touchstone-GPTをオープンソースとして公開した。
- 参考スコア(独自算出の注目度): 22.594428755214356
- License:
- Abstract: As large language models become increasingly prevalent in the financial sector, there is a pressing need for a standardized method to comprehensively assess their performance. However, existing finance benchmarks often suffer from limited language and task coverage, as well as challenges such as low-quality datasets and inadequate adaptability for LLM evaluation. To address these limitations, we propose "Golden Touchstone", the first comprehensive bilingual benchmark for financial LLMs, which incorporates representative datasets from both Chinese and English across eight core financial NLP tasks. Developed from extensive open source data collection and industry-specific demands, this benchmark includes a variety of financial tasks aimed at thoroughly assessing models' language understanding and generation capabilities. Through comparative analysis of major models on the benchmark, such as GPT-4o Llama3, FinGPT and FinMA, we reveal their strengths and limitations in processing complex financial information. Additionally, we open-sourced Touchstone-GPT, a financial LLM trained through continual pre-training and financial instruction tuning, which demonstrates strong performance on the bilingual benchmark but still has limitations in specific tasks.This research not only provides the financial large language models with a practical evaluation tool but also guides the development and optimization of future research. The source code for Golden Touchstone and model weight of Touchstone-GPT have been made publicly available at \url{https://github.com/IDEA-FinAI/Golden-Touchstone}, contributing to the ongoing evolution of FinLLMs and fostering further research in this critical area.
- Abstract(参考訳): 金融セクターで大規模言語モデルがますます普及するにつれて、そのパフォーマンスを包括的に評価する標準化された手法の必要性が高まっている。
しかしながら、既存のファイナンスベンチマークは、低品質データセットやLLM評価の不適切な適応性といった課題と同様に、言語やタスクカバレッジの制限に悩まされることが多い。
この制限に対処するために,8つの中核的金融NLPタスクに中国語と英語の代表的データセットを組み込んだ,金融LLMのための初の総合的バイリンガルベンチマークである"Golden Touchstone"を提案する。
大規模なオープンソースデータ収集と業界固有の要求から開発されたこのベンチマークには、モデルの言語理解と生成能力を徹底的に評価することを目的とした、さまざまな財務タスクが含まれている。
GPT-4o Llama3、FinGPT、FinMAといったベンチマークの主要なモデルの比較分析を通じて、複雑な財務情報を処理する際の長所と短所を明らかにする。
さらに,2言語ベンチマークで高い性能を示すとともに,特定のタスクに制限がある継続的事前学習と財務指導の指導を通じて訓練された金融LLMであるTouchstone-GPTをオープンソースとして公開した。本研究は,金融大言語モデルに実用的な評価ツールを提供するだけでなく,今後の研究の進展と最適化を導く。
Golden Touchstone のソースコードと Touchstone-GPT のモデル重量は \url{https://github.com/IDEA-FinAI/Golden-Touchstone} で公開されている。
関連論文リスト
- Evaluating Large Language Models on Financial Report Summarization: An Empirical Study [9.28042182186057]
我々は3つの最先端大言語モデル(LLM)の比較研究を行っている。
我々の主な動機は、これらのモデルがどのように金融の中で活用できるかを探求することであり、正確さ、文脈的関連性、誤った情報や誤解を招く情報に対する堅牢性を要求する分野である。
本稿では,定量的メトリクス(精度,リコールなど)と質的分析(コンテキスト適合性,一貫性など)を統合し,各モデルの出力品質の全体像を提供する,革新的な評価フレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-11T10:36:04Z) - SNFinLLM: Systematic and Nuanced Financial Domain Adaptation of Chinese Large Language Models [6.639972934967109]
大規模言語モデル (LLM) は、金融業界において自然言語処理を推進するための強力なツールとなっている。
SNFinLLMという中国の金融ドメイン向けに設計された新しい大規模言語モデルを提案する。
SNFinLLMは、質問への回答、財務調査レポートの要約、感情の分析、財務計算の実行など、ドメイン固有のタスクに優れています。
論文 参考訳(メタデータ) (2024-08-05T08:24:24Z) - Financial Knowledge Large Language Model [4.599537455808687]
大規模言語モデル(LLM)の財務知識を評価するための評価ベンチマークであるIDEA-FinBenchを紹介する。
金融分野への一般LLMの迅速な適応を容易にするためのフレームワークであるIDEA-FinKERを提案する。
最後に LLM を利用した財務質問応答システム IDEA-FinQA を提案する。
論文 参考訳(メタデータ) (2024-06-29T08:26:49Z) - AlphaFin: Benchmarking Financial Analysis with Retrieval-Augmented Stock-Chain Framework [48.3060010653088]
我々はAlphaFinデータセットをリリースし、従来の研究データセット、リアルタイム財務データ、手書きのチェーン・オブ・プリート(CoT)データを組み合わせています。
次に、AlphaFinデータセットを使用して、金融分析タスクを効果的に処理するために、Stock-Chainと呼ばれる最先端の手法をベンチマークします。
論文 参考訳(メタデータ) (2024-03-19T09:45:33Z) - No Language is an Island: Unifying Chinese and English in Financial Large Language Models, Instruction Data, and Benchmarks [75.29561463156635]
ICE-PIXIUは、翻訳された英語とオリジナルの英語のデータセットとともに、中国語のタスクのスペクトルを統合する。
多様なモデル変種への無制限アクセス、多言語および多モーダル命令データのコンパイル、エキスパートアノテーションによる評価ベンチマークを提供する。
論文 参考訳(メタデータ) (2024-03-10T16:22:20Z) - FinBen: A Holistic Financial Benchmark for Large Language Models [75.09474986283394]
FinBenは、24の財務タスクにまたがる36のデータセットを含む、最初の大規模なオープンソース評価ベンチマークである。
FinBenは、幅広いタスクとデータセット、ストックトレーディングの最初の評価、新しいエージェントと検索可能な生成(RAG)の評価、およびテキスト要約、質問応答、株式トレーディングのための3つの新しいオープンソース評価データセットを提供する。
論文 参考訳(メタデータ) (2024-02-20T02:16:16Z) - D\'olares or Dollars? Unraveling the Bilingual Prowess of Financial LLMs
Between Spanish and English [67.48541936784501]
Tois'on de Oro は、英語とのスペイン語共同で、命令データセット、微調整 LLM 、および金融 LLM の評価ベンチマークを確立する最初のフレームワークである。
7つのタスクをカバーする15のデータセットから144万以上のスペイン語と英語のサンプルを含む、厳格にキュレートされたバイリンガル命令データセットを構築した。
FLARE-ESは9つのタスクをカバーする21のデータセットを持つ最初の総合的バイリンガル評価ベンチマークである。
論文 参考訳(メタデータ) (2024-02-12T04:50:31Z) - Large Language Model Adaptation for Financial Sentiment Analysis [2.0499240875882]
一般言語モデルは、金融に特化されたタスクでは不足する傾向にある。
1.5B未満のパラメータを持つ2つの基礎モデルは、幅広い戦略を用いて適応されている。
小型LLMは大規模モデルに匹敵する性能を有しつつ,パラメータやデータの観点からも効率がよいことを示す。
論文 参考訳(メタデータ) (2024-01-26T11:04:01Z) - Revolutionizing Finance with LLMs: An Overview of Applications and
Insights [47.11391223936608]
ChatGPTのような大規模言語モデル(LLM)はかなり進歩しており、様々な分野に適用されている。
これらのモデルは、財務報告の自動生成、市場のトレンド予測、投資家の感情分析、パーソナライズされた財務アドバイスの提供に利用されています。
論文 参考訳(メタデータ) (2024-01-22T01:06:17Z) - Is ChatGPT a Financial Expert? Evaluating Language Models on Financial
Natural Language Processing [22.754757518792395]
FinLMEvalは金融言語モデル評価のためのフレームワークである。
本研究では,エンコーダのみの言語モデルとデコーダのみの言語モデルの性能を比較した。
論文 参考訳(メタデータ) (2023-10-19T11:43:15Z) - PIXIU: A Large Language Model, Instruction Data and Evaluation Benchmark
for Finance [63.51545277822702]
PIXIUは、命令データ付き微調整LLaMAに基づく最初の金融大規模言語モデル(LLM)を含む包括的なフレームワークである。
我々はLLaMAを細調整してFinMAを提案する。
我々は、FinMAと既存のLLMを詳細に分析し、重要な財政課題に対処する際の長所と短所を明らかにする。
論文 参考訳(メタデータ) (2023-06-08T14:20:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。