論文の概要: Stabilized Inverse Probability Weighting via Isotonic Calibration
- arxiv url: http://arxiv.org/abs/2411.06342v1
- Date: Sun, 10 Nov 2024 03:09:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:08:42.730890
- Title: Stabilized Inverse Probability Weighting via Isotonic Calibration
- Title(参考訳): 等速校正による安定化逆確率重み付け
- Authors: Lars van der Laan, Ziming Lin, Marco Carone, Alex Luedtke,
- Abstract要約: 推定確率スコアによる逆重み付けは、因果推論で広く使われ、共起バイアスに適応する。
提案手法は, 利用者に供給された, クロスフィットした適合度スコア推定値から, 高い校正, 安定した重み付けを生成する逆正度重み付けのためのポストホック校正アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 0.8874671354802572
- License:
- Abstract: Inverse weighting with an estimated propensity score is widely used by estimation methods in causal inference to adjust for confounding bias. However, directly inverting propensity score estimates can lead to instability, bias, and excessive variability due to large inverse weights, especially when treatment overlap is limited. In this work, we propose a post-hoc calibration algorithm for inverse propensity weights that generates well-calibrated, stabilized weights from user-supplied, cross-fitted propensity score estimates. Our approach employs a variant of isotonic regression with a loss function specifically tailored to the inverse propensity weights. Through theoretical analysis and empirical studies, we demonstrate that isotonic calibration improves the performance of doubly robust estimators of the average treatment effect.
- Abstract(参考訳): 推定確率スコアによる逆重み付けは、因果推論における推定手法により、共起バイアスの調整に広く用いられている。
しかしながら、相対性スコアの直接逆転は、特に治療オーバーラップが制限された場合、大きな逆重みによる不安定性、偏り、過度な変動を引き起こす可能性がある。
そこで本研究では,提案手法を用いて提案する逆正則度重み付け後キャリブレーション手法を提案する。
提案手法は, 逆相対性重みに特化して, 損失関数を付加した異方性回帰の変種を用いる。
理論解析と実証研究により,イソトニックキャリブレーションにより平均処理効果の2倍頑健な推定器の性能が向上することが実証された。
関連論文リスト
- Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
我々は、パラメトリックな$sqrt n $-rateで収束する、最も近い隣人の新しい修正とマッチング推定器を開発する。
我々は,非パラメトリック関数推定器は含まないこと,特に標本サイズ依存パラメータの平滑化には依存していないことを強調する。
論文 参考訳(メタデータ) (2024-07-11T13:28:34Z) - Differentiable Pareto-Smoothed Weighting for High-Dimensional Heterogeneous Treatment Effect Estimation [0.6906005491572401]
重み付き表現学習による数値的ロバストな推定器を開発する。
提案手法は,重み値を効果的に補正することにより,既存手法よりも優れた性能を示すことを示す。
論文 参考訳(メタデータ) (2024-04-26T15:34:04Z) - Improving Diffusion Models for Inverse Problems Using Optimal Posterior Covariance [52.093434664236014]
近年の拡散モデルは、特定の逆問題に対して再訓練することなく、ノイズの多い線形逆問題に対する有望なゼロショット解を提供する。
この発見に触発されて、我々は、最大推定値から決定されるより原理化された共分散を用いて、最近の手法を改善することを提案する。
論文 参考訳(メタデータ) (2024-02-03T13:35:39Z) - Calibrated and Conformal Propensity Scores for Causal Effect Estimation [10.209143402485406]
学習された確率スコアモデルの確率的出力は校正されるべきである。
校正確率スコアはGWAS解析の速度を2倍以上に向上させる。
論文 参考訳(メタデータ) (2023-06-01T06:26:26Z) - Sharp Calibrated Gaussian Processes [58.94710279601622]
キャリブレーションされたモデルを設計するための最先端のアプローチは、ガウス過程の後方分散を膨らませることに依存している。
本稿では,バニラガウス過程の後方分散にインスパイアされた計算を用いて,予測量子化を生成するキャリブレーション手法を提案する。
我々のアプローチは合理的な仮定の下で校正されたモデルが得られることを示す。
論文 参考訳(メタデータ) (2023-02-23T12:17:36Z) - Adversarial Regression with Doubly Non-negative Weighting Matrices [25.733130388781476]
二重非負行列を用いてサンプル重みをパラメータ化することにより、カーネル再重み付け回帰の新しいコヒーレントな手法を提案する。
数値実験により、我々の再重み付け戦略は多くのデータセットに対して有望な結果をもたらすことが示された。
論文 参考訳(メタデータ) (2021-09-30T06:41:41Z) - Heavy-tailed Streaming Statistical Estimation [58.70341336199497]
ストリーミング$p$のサンプルから重み付き統計推定の課題を考察する。
そこで我々は,傾きの雑音に対して,よりニュアンスな条件下での傾きの傾きの低下を設計し,より詳細な解析を行う。
論文 参考訳(メタデータ) (2021-08-25T21:30:27Z) - Weighting-Based Treatment Effect Estimation via Distribution Learning [14.438302755258547]
本研究では,処理効果推定のための分布学習に基づく重み付け手法を開発した。
提案手法は,最先端の重み付けのみのベンチマーク手法よりも優れている。
2倍のロス率推定フレームワークの下では、その優位性を維持している。
論文 参考訳(メタデータ) (2020-12-26T20:15:44Z) - Increasing the efficiency of randomized trial estimates via linear
adjustment for a prognostic score [59.75318183140857]
ランダム化実験による因果効果の推定は臨床研究の中心である。
歴史的借用法のほとんどは、厳格なタイプiエラー率制御を犠牲にして分散の削減を達成する。
論文 参考訳(メタデータ) (2020-12-17T21:10:10Z) - Why resampling outperforms reweighting for correcting sampling bias with
stochastic gradients [10.860844636412862]
バイアスデータセット上で機械学習モデルをトレーニングするには、バイアスを補うための補正テクニックが必要である。
我々は、目的関数を維持するためにサブグループの比率を再均衡させる2つの一般的な手法、再サンプリングと再重み付けについて検討する。
論文 参考訳(メタデータ) (2020-09-28T16:12:38Z) - Calibration of Neural Networks using Splines [51.42640515410253]
キャリブレーション誤差の測定は、2つの経験的分布を比較します。
古典的コルモゴロフ・スミルノフ統計テスト(KS)にインスパイアされたビンニングフリーキャリブレーション尺度を導入する。
提案手法は,KS誤差に対する既存の手法と,他の一般的なキャリブレーション手法とを一貫して比較する。
論文 参考訳(メタデータ) (2020-06-23T07:18:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。