論文の概要: Image Segmentation from Shadow-Hints using Minimum Spanning Trees
- arxiv url: http://arxiv.org/abs/2411.06530v1
- Date: Sun, 10 Nov 2024 17:13:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:08:04.290304
- Title: Image Segmentation from Shadow-Hints using Minimum Spanning Trees
- Title(参考訳): 最小スパンニング木を用いたシャドウヒントからのイメージセグメンテーション
- Authors: Moritz Heep, Eduard Zell,
- Abstract要約: 類似のセグメンテーション品質を実現するが、トレーニングは行わない新しい画像セグメンテーション手法を提案する。
代わりに、例えば測光ステレオの場合のように、静止カメラと異なる位置にある単一の光源を備えた画像シーケンスが必要です。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Image segmentation in RGB space is a notoriously difficult task where state-of-the-art methods are trained on thousands or even millions of annotated images. While the performance is impressive, it is still not perfect. We propose a novel image segmentation method, achieving similar segmentation quality but without training. Instead, we require an image sequence with a static camera and a single light source at varying positions, as used in for photometric stereo, for example.
- Abstract(参考訳): RGB空間における画像セグメンテーションは、最先端の手法が何千、あるいは数百万もの注釈付き画像で訓練されるという、非常に難しい作業である。
パフォーマンスは素晴らしいが、それでも完璧ではない。
類似のセグメンテーション品質を実現するが、トレーニングは行わない新しい画像セグメンテーション手法を提案する。
代わりに、例えば測光ステレオの場合のように、静止カメラと異なる位置にある単一の光源を備えた画像シーケンスが必要です。
関連論文リスト
- UnSeg: One Universal Unlearnable Example Generator is Enough against All Image Segmentation [64.01742988773745]
未承認のプライベートデータ上での大規模なイメージセグメンテーションモデルのトレーニングに関して、プライバシーに関する懸念が高まっている。
我々は、学習不可能な例の概念を利用して、学習不可能なノイズを原画像に生成し、付加することにより、モデルトレーニングに使用不能な画像を作成する。
6つのメインストリームイメージセグメンテーションタスク、10つの広く使われているデータセット、7つの異なるネットワークアーキテクチャでUnSegの有効性を実証的に検証する。
論文 参考訳(メタデータ) (2024-10-13T16:34:46Z) - Learning Semantic Segmentation with Query Points Supervision on Aerial Images [57.09251327650334]
セマンティックセグメンテーションアルゴリズムを学習するための弱教師付き学習アルゴリズムを提案する。
提案手法は正確なセマンティックセグメンテーションを行い,手作業のアノテーションに要するコストと時間を大幅に削減することで効率を向上する。
論文 参考訳(メタデータ) (2023-09-11T14:32:04Z) - Semantic RGB-D Image Synthesis [22.137419841504908]
この問題に対処するために,意味的RGB-D画像合成を導入する。
しかし、現在のアプローチはユニモーダルであり、マルチモーダルデータには対応できない。
意味的レイアウトのモーダル非依存情報とモーダル依存情報とを分離したマルチモーダルデータのジェネレータを提案する。
論文 参考訳(メタデータ) (2023-08-22T11:16:24Z) - Zero-shot spatial layout conditioning for text-to-image diffusion models [52.24744018240424]
大規模テキスト・画像拡散モデルでは、生成画像モデリングにおける技術の現状が大幅に改善されている。
画像キャンバスのセグメントに関連付けられたテキストからの画像生成を考察し、直感的な自然言語インタフェースと生成されたコンテンツの正確な空間制御を組み合わせた。
ZestGuideは,事前学習したテキスト・画像拡散モデルにプラグイン可能なゼロショットセグメンテーション誘導手法である。
論文 参考訳(メタデータ) (2023-06-23T19:24:48Z) - Learning to Annotate Part Segmentation with Gradient Matching [58.100715754135685]
本稿では,事前学習したGANを用いて,高品質な画像を生成することで,半教師付き部分分割タスクに対処することに焦点を当てる。
特に、アノテータ学習を学習から学習までの問題として定式化する。
提案手法は,実画像,生成された画像,さらには解析的に描画された画像を含む,幅広いラベル付き画像からアノテータを学習可能であることを示す。
論文 参考訳(メタデータ) (2022-11-06T01:29:22Z) - Noisy Boundaries: Lemon or Lemonade for Semi-supervised Instance
Segmentation? [59.25833574373718]
ピクセルレベルの擬似ラベルを割り当てることで、半教師付きインスタンスセグメンテーションのためのフレームワークを構築する。
この枠組みでは、擬似ラベルに関連付けられたノイズ境界が二重辺になっていることを指摘した。
我々はそれらを同時に活用し、抵抗することを提案する。
論文 参考訳(メタデータ) (2022-03-25T03:06:24Z) - Sparse Object-level Supervision for Instance Segmentation with Pixel
Embeddings [4.038011160363972]
ほとんどの最先端のインスタンスセグメンテーションメソッドは、密接な注釈付き画像でトレーニングする必要があります。
非空間埋め込みに基づく提案フリーセグメンテーション手法を提案する。
本研究では, 異なる顕微鏡モードにおける2次元および3次元分割問題の解法について検討した。
論文 参考訳(メタデータ) (2021-03-26T16:36:56Z) - Rethinking Interactive Image Segmentation: Feature Space Annotation [68.8204255655161]
本稿では,特徴空間投影による複数画像からの対話的・同時セグメントアノテーションを提案する。
本手法は,前景セグメンテーションデータセットにおける最先端手法の精度を上回ることができることを示す。
論文 参考訳(メタデータ) (2021-01-12T10:13:35Z) - Realizing Pixel-Level Semantic Learning in Complex Driving Scenes based
on Only One Annotated Pixel per Class [17.481116352112682]
本稿では,複雑な運転シーン下でのセマンティックセマンティックセマンティクスタスクを提案する。
3段階のプロセスは擬似ラベル生成のために構築され、各カテゴリに最適な特徴表現を徐々に実装する。
Cityscapesデータセットの実験は、提案手法が弱教師付きセマンティックセマンティックセマンティクスタスクを解決するための実現可能な方法であることを示した。
論文 参考訳(メタデータ) (2020-03-10T12:57:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。