A Next-Generation Approach to Airline Reservations: Integrating Cloud Microservices with AI and Blockchain for Enhanced Operational Performance
- URL: http://arxiv.org/abs/2411.06538v1
- Date: Sun, 10 Nov 2024 17:38:30 GMT
- Title: A Next-Generation Approach to Airline Reservations: Integrating Cloud Microservices with AI and Blockchain for Enhanced Operational Performance
- Authors: Biman Barua, M. Shamim Kaiser,
- Abstract summary: This research proposes the development of a next generation airline reservation system that incorporates the Cloud, distributed artificial intelligence modules and the blockchain technology to improve on the efficiency, safety and customer satisfaction.
The results show that there were clear enhancements in the speed of transactions where the rates of secure data processing rose by 35%, and the system response time by 15 %.
- Score: 1.03590082373586
- License:
- Abstract: This research proposes the development of a next generation airline reservation system that incorporates the Cloud microservices, distributed artificial intelligence modules and the blockchain technology to improve on the efficiency, safety and customer satisfaction. The traditional reservation systems encounter issues related to the expansion of the systems, the integrity of the data provided and the level of service offered to the customers, which is the main focus of this architecture through the modular and data centric design approaches. This will allow different operations such as reservations, payments, and customer data management among others to be performed separately thereby facilitating high availability of the system by 30% and enhancing performance of the system by 40% on its scalability. Such systems contain AI driven modules that utilize the past booking patterns along with the profile of the customer to estimate the demand and make recommendations, which increases to 25 % of customer engagement. Moreover, blockchain is effective in engaging an incorruptible ledger system for the all transactions therefore mitigating fraud incidences and increasing the clarity by 20%. The system was subjected to analysis using a simulator and using machine learning evaluations that rated it against other conventional systems. The results show that there were clear enhancements in the speed of transactions where the rates of secure data processing rose by 35%, and the system response time by 15 %. The system can also be used for other high transaction industries like logistics and hospitality. This structural design is indicative of how the use of advanced technologies will revolutionize the airline reservation sector. The implications are growing effectiveness, improvement in security and greater customer contentment.
Related papers
- AI-in-the-Loop Sensing and Communication Joint Design for Edge Intelligence [65.29835430845893]
We propose a framework that enhances edge intelligence through AI-in-the-loop joint sensing and communication.
A key contribution of our work is establishing an explicit relationship between validation loss and the system's tunable parameters.
We show that our framework reduces communication energy consumption by up to 77 percent and sensing costs measured by the number of samples by up to 52 percent.
arXiv Detail & Related papers (2025-02-14T14:56:58Z) - Secure Resource Allocation via Constrained Deep Reinforcement Learning [49.15061461220109]
We present SARMTO, a framework that balances resource allocation, task offloading, security, and performance.
SARMTO consistently outperforms five baseline approaches, achieving up to a 40% reduction in system costs.
These enhancements highlight SARMTO's potential to revolutionize resource management in intricate distributed computing environments.
arXiv Detail & Related papers (2025-01-20T15:52:43Z) - Microservices-Based Framework for Predictive Analytics and Real-time Performance Enhancement in Travel Reservation Systems [1.03590082373586]
The paper presents a framework of architecture dedicated to enhancing the performance of real-time travel reservation systems.
Our framework includes real-time predictive analytics, through machine learning models, that optimize forecasting customer demand, dynamic pricing, as well as system performance.
Future work will be an investigation of advanced AI models and edge processing to further improve the performance and robustness of the systems employed.
arXiv Detail & Related papers (2024-12-20T07:19:42Z) - Real-Time Performance Optimization of Travel Reservation Systems Using AI and Microservices [1.03590082373586]
This study proposes a hybrid framework that folds an Artificial Intelligence and a Microservices approach for the performance optimization of the system.
The AI algorithms forecast demand patterns, optimize the allocation of resources, and enhance decision-making driven by Microservices architecture.
arXiv Detail & Related papers (2024-12-09T16:08:22Z) - Optimizing Airline Reservation Systems with Edge-Enabled Microservices: A Framework for Real-Time Data Processing and Enhanced User Responsiveness [1.03590082373586]
This paper outlines a conceptual framework for the implementation of edge computing in the airline industry.
As edge computing allows for certain activities such as seat inventory checks, booking processes and even confirmation to be done nearer to the user, thus lessening the overall response time and improving the performance of the system.
The framework value should include achieving the high performance of the system such as low latency, high throughput and higher user experience.
arXiv Detail & Related papers (2024-11-19T16:58:15Z) - Enhancing Resilience and Scalability in Travel Booking Systems: A Microservices Approach to Fault Tolerance, Load Balancing, and Service Discovery [1.03590082373586]
This paper investigates the inclusion of monolithic architecture in the development of scalable and reliable airline reservation systems.
Traditional reservation systems are very rigid and centralized which makes them prone to bottlenecks and a single point of failure.
Microservices offer better resiliency and scalability because the services do not depend on one another and can be deployed independently.
arXiv Detail & Related papers (2024-10-25T17:19:42Z) - Blockchain-Based Trust and Transparency in Airline Reservation Systems using Microservices Architecture [1.03590082373586]
The study investigates the major components of blockchain technology such as decentralised databases, permanent records of transactions and transactional clauses executed via codes of programs.
The results show a 30% decrease in booking variations together with greater data synchronization as a result of consensus processes and resistant data formations.
The architecture of the system has no single point failure with over 98% reliability while measures taken to improve security have led to 85% of the customers expressing trust in the services provided.
arXiv Detail & Related papers (2024-10-18T14:58:22Z) - Decentralized Multimedia Data Sharing in IoV: A Learning-based Equilibrium of Supply and Demand [57.82021900505197]
Internet of Vehicles (IoV) has great potential to transform transportation systems by enhancing road safety, reducing traffic congestion, and improving user experience through onboard infotainment applications.
Decentralized data sharing can improve security, privacy, reliability, and facilitate infotainment data sharing in IoVs.
We propose a decentralized data-sharing incentive mechanism based on multi-intelligent reinforcement learning to learn the supply-demand balance in markets.
arXiv Detail & Related papers (2024-03-29T14:58:28Z) - A Learning-based Incentive Mechanism for Mobile AIGC Service in Decentralized Internet of Vehicles [49.86094523878003]
We propose a decentralized incentive mechanism for mobile AIGC service allocation.
We employ multi-agent deep reinforcement learning to find the balance between the supply of AIGC services on RSUs and user demand for services within the IoV context.
arXiv Detail & Related papers (2024-03-29T12:46:07Z) - Enhancing User' s Income Estimation with Super-App Alternative Data [59.60094442546867]
It compares the performance of these alternative data sources with the performance of industry-accepted bureau income estimators.
Ultimately, this paper shows the incentive for financial institutions to seek to incorporate alternative data into constructing their risk profiles.
arXiv Detail & Related papers (2021-04-12T21:34:44Z) - Knowledge Integration of Collaborative Product Design Using Cloud
Computing Infrastructure [65.2157099438235]
The main focus of this paper is the concept of ongoing research in providing the knowledge integration service for collaborative product design and development using cloud computing infrastructure.
Proposed knowledge integration services support users by giving real-time access to knowledge resources.
arXiv Detail & Related papers (2020-01-16T18:44:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.