Foundation Model for Composite Materials and Microstructural Analysis
- URL: http://arxiv.org/abs/2411.06565v2
- Date: Tue, 04 Feb 2025 14:57:37 GMT
- Title: Foundation Model for Composite Materials and Microstructural Analysis
- Authors: Ting-Ju Wei, Chuin-Shan Chen,
- Abstract summary: We present a foundation model specifically designed for composite materials.
Our findings validate the feasibility and effectiveness of foundation models in composite materials.
This framework enables high-accuracy predictions even when experimental data are scarce.
- Score: 0.0
- License:
- Abstract: The rapid advancement of machine learning has unlocked numerous opportunities for materials science, particularly in accelerating the design and analysis of materials. However, a significant challenge lies in the scarcity and high cost of obtaining high-quality materials datasets. While foundation models pre-trained on large datasets have excelled in fields like natural language processing by leveraging latent features through transfer learning, their application in materials science remains limited. Here, we present a foundation model specifically designed for composite materials. Pre-trained on a dataset of short-fiber composites to learn robust latent features, the model accurately predicts homogenized stiffness during transfer learning, even with limited training data. Additionally, our model effectively predicts the material's nonlinear behavior by transferring these learned features to an Interaction-based Material Network, which is a constitutive surrogate model. These results demonstrate the potential of our foundation model to capture complex material behaviors. Our findings validate the feasibility and effectiveness of foundation models in composite materials. We anticipate extending this approach to more complex three-dimensional composite materials, polycrystalline materials, and beyond. Moreover, this framework enables high-accuracy predictions even when experimental data are scarce, paving the way for more efficient and cost-effective materials design and analysis.
Related papers
- DARWIN 1.5: Large Language Models as Materials Science Adapted Learners [46.7259033847682]
We propose DARWIN 1.5, the largest open-source large language model tailored for materials science.
DARWIN eliminates the need for task-specific descriptors and enables a flexible, unified approach to material property prediction and discovery.
Our approach integrates 6M material domain papers and 21 experimental datasets from 49,256 materials across modalities while enabling cross-task knowledge transfer.
arXiv Detail & Related papers (2024-12-16T16:51:27Z) - Out-of-distribution materials property prediction using adversarial learning based fine-tuning [0.0]
We propose an adversarial learning based targeting finetuning approach to make the model adapted to a particular dataset.
Our experiments demonstrate the success of our CAL algorithm with its high effectiveness in ML with limited samples.
arXiv Detail & Related papers (2024-08-17T21:22:21Z) - Intrinsic Image Diffusion for Indoor Single-view Material Estimation [55.276815106443976]
We present Intrinsic Image Diffusion, a generative model for appearance decomposition of indoor scenes.
Given a single input view, we sample multiple possible material explanations represented as albedo, roughness, and metallic maps.
Our method produces significantly sharper, more consistent, and more detailed materials, outperforming state-of-the-art methods by $1.5dB$ on PSNR and by $45%$ better FID score on albedo prediction.
arXiv Detail & Related papers (2023-12-19T15:56:19Z) - Multimodal Learning for Materials [7.167520424757711]
We introduce Multimodal Learning for Materials (MultiMat), which enables self-supervised multi-modality training of foundation models for materials.
We demonstrate our framework's potential using data from the Materials Project database on multiple axes.
arXiv Detail & Related papers (2023-11-30T18:35:29Z) - Scalable Diffusion for Materials Generation [99.71001883652211]
We develop a unified crystal representation that can represent any crystal structure (UniMat)
UniMat can generate high fidelity crystal structures from larger and more complex chemical systems.
We propose additional metrics for evaluating generative models of materials.
arXiv Detail & Related papers (2023-10-18T15:49:39Z) - Multimodal machine learning for materials science: composition-structure
bimodal learning for experimentally measured properties [4.495968252019426]
This paper introduces a novel approach to multimodal machine learning in materials science via composition-structure bimodal learning.
The proposed COmposition-Structure Bimodal Network (COSNet) is designed to enhance learning and predictions of experimentally measured materials properties that have incomplete structure information.
arXiv Detail & Related papers (2023-08-04T02:04:52Z) - Data-driven multi-scale modeling and robust optimization of composite
structure with uncertainty quantification [0.42581756453559755]
This chapter demonstrates advanced data-driven methods and outlines the capability that must be developed/added for the multi-scale modeling of advanced composite materials.
It proposes a multi-scale modeling method for composite structures based on a finite element method (FEM) simulation driven by surrogate models/emulators.
arXiv Detail & Related papers (2022-10-13T16:40:11Z) - How to See Hidden Patterns in Metamaterials with Interpretable Machine
Learning [82.67551367327634]
We develop a new interpretable, multi-resolution machine learning framework for finding patterns in the unit-cells of materials.
Specifically, we propose two new interpretable representations of metamaterials, called shape-frequency features and unit-cell templates.
arXiv Detail & Related papers (2021-11-10T21:19:02Z) - Model-agnostic multi-objective approach for the evolutionary discovery
of mathematical models [55.41644538483948]
In modern data science, it is more interesting to understand the properties of the model, which parts could be replaced to obtain better results.
We use multi-objective evolutionary optimization for composite data-driven model learning to obtain the algorithm's desired properties.
arXiv Detail & Related papers (2021-07-07T11:17:09Z) - Predictive modeling approaches in laser-based material processing [59.04160452043105]
This study aims to automate and forecast the effect of laser processing on material structures.
The focus is centred on the performance of representative statistical and machine learning algorithms.
Results can set the basis for a systematic methodology towards reducing material design, testing and production cost.
arXiv Detail & Related papers (2020-06-13T17:28:52Z) - Intelligent multiscale simulation based on process-guided composite
database [0.0]
We present an integrated data-driven modeling framework based on process modeling, material homogenization, and machine learning.
We are interested in the injection-molded short fiber reinforced composites, which have been identified as key material systems in automotive, aerospace, and electronics industries.
arXiv Detail & Related papers (2020-03-20T20:39:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.