論文の概要: MolMiner: Towards Controllable, 3D-Aware, Fragment-Based Molecular Design
- arxiv url: http://arxiv.org/abs/2411.06608v2
- Date: Fri, 23 May 2025 21:18:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-27 14:32:52.9451
- Title: MolMiner: Towards Controllable, 3D-Aware, Fragment-Based Molecular Design
- Title(参考訳): MolMiner: 制御可能な3D認識, フラグメントに基づく分子設計を目指して
- Authors: Raul Ortega-Ochoa, Tejs Vegge, Jes Frellsen,
- Abstract要約: MolMinerは、分子設計のための断片的、幾何学的、秩序に依存しない自己回帰モデルである。
MolMinerは12個以上の性質を持つ分子の条件生成をサポートし、物理化学的および構造的標的に対して柔軟な制御を可能にする。
- 参考スコア(独自算出の注目度): 7.366789601705544
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We introduce MolMiner, a fragment-based, geometry-aware, and order-agnostic autoregressive model for molecular design. MolMiner supports conditional generation of molecules over twelve properties, enabling flexible control across physicochemical and structural targets. Molecules are built via symmetry-aware fragment attachments, with 3D geometry dynamically updated during generation using forcefields. A probabilistic conditioning mechanism allows users to specify any subset of target properties while sampling the rest. MolMiner achieves calibrated conditional generation across most properties and offers competitive unconditional performance. We also propose improved benchmarking methods for both unconditional and conditional generation, including distributional comparisons via Wasserstein distance and calibration plots for property control. To our knowledge, this is the first model to unify dynamic geometry, symmetry handling, order-agnostic fragment-based generation, and high-dimensional multi-property conditioning.
- Abstract(参考訳): 分子設計のためのフラグメントベース,幾何学的認識,秩序に依存しない自己回帰モデルである MolMiner を紹介する。
MolMinerは12個以上の性質を持つ分子の条件生成をサポートし、物理化学的および構造的標的に対して柔軟な制御を可能にする。
分子は対称性を意識したフラグメントアタッチメントによって構築され、3次元幾何学は力場を用いて生成中に動的に更新される。
確率的条件付け(probabilistic conditioning)機構により、ユーザは、残りの部分をサンプリングしながら、ターゲットプロパティのサブセットを指定できる。
MolMinerは、ほとんどの特性に対して校正された条件生成を実現し、競争力のない非条件性能を提供する。
また、Wasserstein距離による分布比較や、プロパティ制御のための校正プロットを含む、無条件および条件生成のための改良されたベンチマーク手法を提案する。
我々の知る限り、これは動的幾何、対称性ハンドリング、秩序に依存しないフラグメントベース生成、高次元マルチプロパティ条件を統一する最初のモデルである。
関連論文リスト
- Mol-CADiff: Causality-Aware Autoregressive Diffusion for Molecule Generation [13.401822039640297]
Mol-CADiffは、テキスト条件の分子生成に因果的注意機構を用いる、新しい拡散ベースのフレームワークである。
提案手法はテキストプロンプトと分子構造との因果関係を明示的にモデル化し,既存の手法の限界を克服する。
我々の実験は、モル-CADiffが多種多様で新規で化学的に有効な分子を生成する上で、最先端の手法より優れていることを実証した。
論文 参考訳(メタデータ) (2025-03-07T15:10:37Z) - Diffusion Models for Molecules: A Survey of Methods and Tasks [56.44565051667812]
分子に関する生成タスクは、薬物の発見と材料設計に不可欠である。
拡散モデルは、深い生成モデルの印象的なクラスとして現れている。
本稿では拡散モデルに基づく分子生成法について包括的に調査する。
論文 参考訳(メタデータ) (2025-02-13T17:22:50Z) - D3MES: Diffusion Transformer with multihead equivariant self-attention for 3D molecule generation [1.3791394805787949]
本稿では,拡散モデルDiffusion Transformerとマルチヘッド同型自己アテンションを組み合わせた3次元分子生成のための拡散モデルを提案する。
この方法は、2つの主要な課題に対処する: 水素原子を除去した後、分子の表現を学ぶことによって生成分子に水素原子を正しく取り付けること; 同時に複数のクラスにまたがる分子を生成できない既存のモデルの限界を克服すること。
論文 参考訳(メタデータ) (2025-01-13T06:16:11Z) - Rethinking Molecular Design: Integrating Latent Variable and Auto-Regressive Models for Goal Directed Generation [0.6800113478497425]
我々は、分子の最も単純な表現に戻り、古典的生成的アプローチの見過ごされた制限を調査する。
本稿では, 分子配列の妥当性, 条件生成, スタイル伝達を改善するために, 両者の強みを生かした, 新規な正則化器の形でのハイブリッドモデルを提案する。
論文 参考訳(メタデータ) (2024-08-19T11:50:23Z) - LDMol: Text-to-Molecule Diffusion Model with Structurally Informative Latent Space [55.5427001668863]
テキスト条件付き分子生成のための遅延拡散モデル LDMol を提案する。
LDMolは、学習可能で構造的に有意な特徴空間を生成する分子オートエンコーダを含む。
我々は,LDMolを分子間検索やテキスト誘導分子編集などの下流タスクに適用できることを示す。
論文 参考訳(メタデータ) (2024-05-28T04:59:13Z) - Diffusing on Two Levels and Optimizing for Multiple Properties: A Novel
Approach to Generating Molecules with Desirable Properties [33.2976176283611]
本稿では,分子を望ましい性質で生成する新しい手法を提案する。
望ましい分子断片を得るため,我々は新しい電子効果に基づくフラグメンテーション法を開発した。
提案手法により生成する分子は, 従来のSOTAモデルより有効, 特異性, 新規性, Fr'echet ChemNet Distance (FCD), QED, PlogP を有することを示す。
論文 参考訳(メタデータ) (2023-10-05T11:43:21Z) - Molecule Design by Latent Space Energy-Based Modeling and Gradual
Distribution Shifting [53.44684898432997]
化学的・生物学的性質が望ましい分子の生成は、薬物発見にとって重要である。
本稿では,分子の結合分布とその特性を捉える確率的生成モデルを提案する。
本手法は種々の分子設計タスクにおいて非常に強力な性能を発揮する。
論文 参考訳(メタデータ) (2023-06-09T03:04:21Z) - Domain-Agnostic Molecular Generation with Chemical Feedback [44.063584808910896]
MolGenは、分子生成に特化した事前訓練された分子言語モデルである。
1億以上の分子SELFIESを再構成することで構造的および文法的な洞察を内部化する。
我々の化学フィードバックパラダイムは、モデルを分子幻覚から遠ざけ、モデルの推定確率と実世界の化学的嗜好との整合性を確保する。
論文 参考訳(メタデータ) (2023-01-26T17:52:56Z) - A Molecular Multimodal Foundation Model Associating Molecule Graphs with
Natural Language [63.60376252491507]
本稿では,分子グラフとその意味的関連テキストデータから事前学習した分子マルチモーダル基礎モデルを提案する。
我々のモデルは、生物学、化学、材料、環境、医学などの分野において、AIを動力とする分野に幅広い影響を与えるだろうと考えています。
論文 参考訳(メタデータ) (2022-09-12T00:56:57Z) - Retrieval-based Controllable Molecule Generation [63.44583084888342]
制御可能な分子生成のための検索に基づく新しいフレームワークを提案する。
我々は、与えられた設計基準を満たす分子の合成に向けて、事前学習された生成モデルを操るために、分子の小さなセットを使用します。
提案手法は生成モデルの選択に非依存であり,タスク固有の微調整は不要である。
論文 参考訳(メタデータ) (2022-08-23T17:01:16Z) - Interpretable Molecular Graph Generation via Monotonic Constraints [19.401468196146336]
ディープグラフ生成モデルは、分子設計をグラフ生成問題として扱う。
既存のモデルには多くの欠点があり、解釈性や所望の分子特性に対する制御性が低い。
本稿では,分子生成の解釈可能なモデルと深層制御可能なモデルを用いた新しい手法を提案する。
論文 参考訳(メタデータ) (2022-02-28T08:35:56Z) - Molecular Attributes Transfer from Non-Parallel Data [57.010952598634944]
分子最適化をスタイル伝達問題として定式化し、非並列データの2つのグループ間の内部差を自動的に学習できる新しい生成モデルを提案する。
毒性修飾と合成性向上という2つの分子最適化タスクの実験により,本モデルがいくつかの最先端手法を著しく上回ることを示した。
論文 参考訳(メタデータ) (2021-11-30T06:10:22Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
分子グラフから分子コンフォメーション(つまり3d構造)を生成する方法を検討した。
分子グラフから有効かつ多様なコンフォーメーションを生成する新しい確率論的枠組みを提案する。
論文 参考訳(メタデータ) (2021-02-20T03:17:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。