Veri-Car: Towards Open-world Vehicle Information Retrieval
- URL: http://arxiv.org/abs/2411.06864v1
- Date: Mon, 11 Nov 2024 10:56:40 GMT
- Title: Veri-Car: Towards Open-world Vehicle Information Retrieval
- Authors: Andrés Muñoz, Nancy Thomas, Annita Vapsi, Daciel Borrajo,
- Abstract summary: In this paper, we present Veri-Car, an information retrieval integrated approach designed to help on this task.
It leverages supervised learning techniques to accurately identify the make, type, model, year, color, and license plate of cars.
The approach also addresses the challenge of handling open-world problems, where new car models and variations frequently emerge.
- Score: 0.9401437561978983
- License:
- Abstract: Many industrial and service sectors require tools to extract vehicle characteristics from images. This is a complex task not only by the variety of noise, and large number of classes, but also by the constant introduction of new vehicle models to the market. In this paper, we present Veri-Car, an information retrieval integrated approach designed to help on this task. It leverages supervised learning techniques to accurately identify the make, type, model, year, color, and license plate of cars. The approach also addresses the challenge of handling open-world problems, where new car models and variations frequently emerge, by employing a sophisticated combination of pre-trained models, and a hierarchical multi-similarity loss. Veri-Car demonstrates robust performance, achieving high precision and accuracy in classifying both seen and unseen data. Additionally, it integrates an ensemble license plate detection, and an OCR model to extract license plate numbers with impressive accuracy.
Related papers
- AIDE: An Automatic Data Engine for Object Detection in Autonomous Driving [68.73885845181242]
We propose an Automatic Data Engine (AIDE) that automatically identifies issues, efficiently curates data, improves the model through auto-labeling, and verifies the model through generation of diverse scenarios.
We further establish a benchmark for open-world detection on AV datasets to comprehensively evaluate various learning paradigms, demonstrating our method's superior performance at a reduced cost.
arXiv Detail & Related papers (2024-03-26T04:27:56Z) - A Large-Scale Car Parts (LSCP) Dataset for Lightweight Fine-Grained
Detection [0.23020018305241333]
This paper presents a large-scale and fine-grained automotive dataset consisting of 84,162 images for detecting 12 different types of car parts.
To alleviate the burden of manual annotation, we propose a novel semi-supervised auto-labeling method.
We also study the limitations of the Grounding DINO approach for zero-shot labeling.
arXiv Detail & Related papers (2023-11-20T13:30:42Z) - Scalable Vehicle Re-Identification via Self-Supervision [66.2562538902156]
Vehicle Re-Identification is one of the key elements in city-scale vehicle analytics systems.
Many state-of-the-art solutions for vehicle re-id mostly focus on improving the accuracy on existing re-id benchmarks and often ignore computational complexity.
We propose a simple yet effective hybrid solution empowered by self-supervised training which only uses a single network during inference time.
arXiv Detail & Related papers (2022-05-16T12:14:42Z) - Utilizing Active Machine Learning for Quality Assurance: A Case Study of
Virtual Car Renderings in the Automotive Industry [0.0]
We propose an active machine learning-based quality assurance system that requires significantly fewer labeled instances to identify defective virtual car renderings.
By employing our system at a German automotive manufacturer, start-up difficulties can be overcome, the inspection process efficiency can be increased, and thus economic advantages can be realized.
arXiv Detail & Related papers (2021-10-18T05:43:06Z) - Pluggable Weakly-Supervised Cross-View Learning for Accurate Vehicle
Re-Identification [53.6218051770131]
Cross-view consistent feature representation is key for accurate vehicle ReID.
Existing approaches resort to supervised cross-view learning using extensive extra viewpoints annotations.
We present a pluggable Weakly-supervised Cross-View Learning (WCVL) module for vehicle ReID.
arXiv Detail & Related papers (2021-03-09T11:51:09Z) - Diverse Complexity Measures for Dataset Curation in Self-driving [80.55417232642124]
We propose a new data selection method that exploits a diverse set of criteria that quantize interestingness of traffic scenes.
Our experiments show that the proposed curation pipeline is able to select datasets that lead to better generalization and higher performance.
arXiv Detail & Related papers (2021-01-16T23:45:02Z) - AutoBayes: Automated Bayesian Graph Exploration for Nuisance-Robust
Inference [21.707911452679152]
We introduce an automated Bayesian inference framework, called AutoBayes, to optimize nuisance-invariant machine learning pipelines.
We demonstrate a significant performance improvement with ensemble learning across explored graphical models.
arXiv Detail & Related papers (2020-07-02T17:06:26Z) - VehicleNet: Learning Robust Visual Representation for Vehicle
Re-identification [116.1587709521173]
We propose to build a large-scale vehicle dataset (called VehicleNet) by harnessing four public vehicle datasets.
We design a simple yet effective two-stage progressive approach to learning more robust visual representation from VehicleNet.
We achieve the state-of-art accuracy of 86.07% mAP on the private test set of AICity Challenge.
arXiv Detail & Related papers (2020-04-14T05:06:38Z) - The Devil is in the Details: Self-Supervised Attention for Vehicle
Re-Identification [75.3310894042132]
Self-supervised Attention for Vehicle Re-identification (SAVER) is a novel approach to effectively learn vehicle-specific discriminative features.
We show that SAVER improves upon the state-of-the-art on challenging VeRi, VehicleID, Vehicle-1M and VERI-Wild datasets.
arXiv Detail & Related papers (2020-04-14T02:24:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.