論文の概要: Data-driven discovery of mechanical models directly from MRI spectral data
- arxiv url: http://arxiv.org/abs/2411.06958v1
- Date: Mon, 11 Nov 2024 13:05:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:07:03.032275
- Title: Data-driven discovery of mechanical models directly from MRI spectral data
- Title(参考訳): MRIスペクトルデータから直接のメカニカルモデルのデータ駆動による発見
- Authors: D. G. J. Heesterbeek, M. H. C. van Riel, T. van Leeuwen, C. A. T. van den Berg, A. Sbrizzi,
- Abstract要約: 実験により得られたMRIスペクトルデータから動的モデルのデータ駆動的発見のための再構成フレームワークを提案する。
提案手法は,非線形ダイナミクスのスパース同定(SINDy)を用いた解釈可能モデルのデータ駆動探索と組み合わせたものである。
臨床MRIスキャナーに収集した動的ファントムのスペクトルデータを用いて,本法の有効性を検証した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Finding interpretable biomechanical models can provide insight into the functionality of organs with regard to physiology and disease. However, identifying broadly applicable dynamical models for in vivo tissue remains challenging. In this proof of concept study we propose a reconstruction framework for data-driven discovery of dynamical models from experimentally obtained undersampled MRI spectral data. The method makes use of the previously developed spectro-dynamic framework which allows for reconstruction of displacement fields at high spatial and temporal resolution required for model identification. The proposed framework combines this method with data-driven discovery of interpretable models using Sparse Identification of Non-linear Dynamics (SINDy). The design of the reconstruction algorithm is such that a symbiotic relation between the reconstruction of the displacement fields and the model identification is created. Our method does not rely on periodicity of the motion. It is successfully validated using spectral data of a dynamic phantom gathered on a clinical MRI scanner. The dynamic phantom is programmed to perform motion adhering to 5 different (non-linear) ordinary differential equations. The proposed framework performed better than a 2-step approach where the displacement fields were first reconstructed from the undersampled data without any information on the model, followed by data-driven discovery of the model using the reconstructed displacement fields. This study serves as a first step in the direction of data-driven discovery of in vivo models.
- Abstract(参考訳): 解釈可能な生体力学モデルを見つけることは、生理学と疾患に関する臓器の機能についての洞察を与えることができる。
しかし、生体組織に対して広く適用可能な動的モデルを特定することは依然として困難である。
本稿では,実験により得られたMRIスペクトルデータから動的モデルのデータ駆動的発見のための再構成フレームワークを提案する。
本手法では, モデル同定に必要な高空間・時間分解能の変位場を復元することのできる, 従来開発された分光力学フレームワークを利用する。
提案手法は,SINDy(Sparse Identification of Non-linear Dynamics)を用いた解釈可能なモデルのデータ駆動的発見と組み合わせる。
再構成アルゴリズムの設計は、変位場の再構成とモデル同定との共生関係を作成するものである。
我々の手法は動きの周期性に依存しない。
臨床MRIスキャナーに収集した動的ファントムのスペクトルデータを用いて,本法の有効性を検証した。
動的ファントムは5つの異なる(非線形でない)常微分方程式に付着する運動をプログラムする。
提案手法は, モデルに関する情報のないアンダーサンプルデータから変位場を初めて再構成し, そして再構成された変位場を用いてモデルを検出する2段階の手法よりも優れた性能を示した。
この研究は、生体内モデルのデータ駆動的な発見の方向への第一歩となる。
関連論文リスト
- Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
拡散モデル(DPM)は急速に進化し、合成データのシミュレーションにおける主要な生成モデルの一つとなっている。
本稿では,個人が訪れた物理的位置を表す変数列である合成個別位置軌跡(ILT)の生成にDPMを用いることを提案する。
論文 参考訳(メタデータ) (2024-02-19T15:57:39Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - CoRRECT: A Deep Unfolding Framework for Motion-Corrected Quantitative
R2* Mapping [12.414040285543273]
CoRRECTは、定量的MRI(qMRI)のための統合深部展開(DU)フレームワークである
モデルベースのエンドツーエンドニューラルネットワーク、モーションアーティファクトリダクションの方法、自己教師型学習スキームで構成されている。
実験で収集したmGRE(Multi-Gradient-Recalled Echo) MRIデータから,CoRRECTは高速な取得設定で動きと不均一なアーチファクトのないR2*マップを復元することを示した。
論文 参考訳(メタデータ) (2022-10-12T15:49:51Z) - Spatio-temporally separable non-linear latent factor learning: an
application to somatomotor cortex fMRI data [0.0]
潜在因子の脳全体の発見が可能なfMRIデータのモデルについて検討する。
空間重み付けを効率化するための新しい手法は、データの高次元性とノイズの存在に対処するために重要である。
本手法は,複数のモーターサブタスクを用いたデータを用いて,モデルが各サブタスクに対応する非絡み合った潜在因子を捕捉するかどうかを評価する。
論文 参考訳(メタデータ) (2022-05-26T21:30:22Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Dynamic Mode Decomposition in Adaptive Mesh Refinement and Coarsening
Simulations [58.720142291102135]
動的モード分解(DMD)はコヒーレントなスキームを抽出する強力なデータ駆動方式である。
本稿では,異なるメッシュトポロジと次元の観測からDMDを抽出する戦略を提案する。
論文 参考訳(メタデータ) (2021-04-28T22:14:25Z) - Graph-based Normalizing Flow for Human Motion Generation and
Reconstruction [20.454140530081183]
過去の情報と制御信号に基づく長地平線運動系列を合成・再構築する確率生成モデルを提案する。
足踏み解析と骨長解析を併用したモーションキャプチャデータセットを用いたモデル評価を行った。
論文 参考訳(メタデータ) (2021-04-07T09:51:15Z) - Latent linear dynamics in spatiotemporal medical data [0.0]
逐次的画像のみに基づいて,システムの基盤となるダイナミクスを識別する教師なしモデルを提案する。
モデルは、入力を隠れ状態過程と観察された潜伏過程の間に線形関係が保たれる低次元潜伏空間にマッピングする。
システムダイナミクスの知識は、デノイジング、欠落値のインプテーション、将来の画像フレームの補間を可能にする。
論文 参考訳(メタデータ) (2021-03-01T11:42:21Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
被験者の大規模なコホートを含むグループ研究は、脳機能組織に関する一般的な結論を引き出す上で重要である。
グループ研究のための新しい多視点独立成分分析モデルを提案し、各被験者のデータを共有独立音源と雑音の線形結合としてモデル化する。
まず、fMRIデータを用いて、被験者間の共通音源の同定における感度の向上を示す。
論文 参考訳(メタデータ) (2020-06-11T17:29:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。