Data-driven discovery of mechanical models directly from MRI spectral data
- URL: http://arxiv.org/abs/2411.06958v1
- Date: Mon, 11 Nov 2024 13:05:29 GMT
- Title: Data-driven discovery of mechanical models directly from MRI spectral data
- Authors: D. G. J. Heesterbeek, M. H. C. van Riel, T. van Leeuwen, C. A. T. van den Berg, A. Sbrizzi,
- Abstract summary: We propose a reconstruction framework for data-driven discovery of dynamical models from experimentally obtained undersampled MRI spectral data.
The proposed framework combines this method with data-driven discovery of interpretable models using Sparse Identification of Non-linear Dynamics (SINDy)
It is successfully validated using spectral data of a dynamic phantom gathered on a clinical MRI scanner.
- Score: 0.0
- License:
- Abstract: Finding interpretable biomechanical models can provide insight into the functionality of organs with regard to physiology and disease. However, identifying broadly applicable dynamical models for in vivo tissue remains challenging. In this proof of concept study we propose a reconstruction framework for data-driven discovery of dynamical models from experimentally obtained undersampled MRI spectral data. The method makes use of the previously developed spectro-dynamic framework which allows for reconstruction of displacement fields at high spatial and temporal resolution required for model identification. The proposed framework combines this method with data-driven discovery of interpretable models using Sparse Identification of Non-linear Dynamics (SINDy). The design of the reconstruction algorithm is such that a symbiotic relation between the reconstruction of the displacement fields and the model identification is created. Our method does not rely on periodicity of the motion. It is successfully validated using spectral data of a dynamic phantom gathered on a clinical MRI scanner. The dynamic phantom is programmed to perform motion adhering to 5 different (non-linear) ordinary differential equations. The proposed framework performed better than a 2-step approach where the displacement fields were first reconstructed from the undersampled data without any information on the model, followed by data-driven discovery of the model using the reconstructed displacement fields. This study serves as a first step in the direction of data-driven discovery of in vivo models.
Related papers
- Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
Diffusion models (DPMs) have rapidly evolved to be one of the predominant generative models for the simulation of synthetic data.
We propose using DPMs for the generation of synthetic individual location trajectories (ILTs) which are sequences of variables representing physical locations visited by individuals.
arXiv Detail & Related papers (2024-02-19T15:57:39Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - CoRRECT: A Deep Unfolding Framework for Motion-Corrected Quantitative
R2* Mapping [12.414040285543273]
CoRRECT is a unified deep unfolding (DU) framework for Quantitative MRI (qMRI)
It consists of a model-based end-to-end neural network, a method for motion-artifact reduction, and a self-supervised learning scheme.
Our results on experimentally collected multi-Gradient-Recalled Echo (mGRE) MRI data show that CoRRECT recovers motion and inhomogeneity artifact-free R2* maps in highly accelerated acquisition settings.
arXiv Detail & Related papers (2022-10-12T15:49:51Z) - Spatio-temporally separable non-linear latent factor learning: an
application to somatomotor cortex fMRI data [0.0]
Models of fMRI data that can perform whole-brain discovery of latent factors are understudied.
New methods for efficient spatial weight-sharing are critical to deal with the high dimensionality of the data and the presence of noise.
Our approach is evaluated on data with multiple motor sub-tasks to assess whether the model captures disentangled latent factors that correspond to each sub-task.
arXiv Detail & Related papers (2022-05-26T21:30:22Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Dynamic Mode Decomposition in Adaptive Mesh Refinement and Coarsening
Simulations [58.720142291102135]
Dynamic Mode Decomposition (DMD) is a powerful data-driven method used to extract coherent schemes.
This paper proposes a strategy to enable DMD to extract from observations with different mesh topologies and dimensions.
arXiv Detail & Related papers (2021-04-28T22:14:25Z) - Graph-based Normalizing Flow for Human Motion Generation and
Reconstruction [20.454140530081183]
We propose a probabilistic generative model to synthesize and reconstruct long horizon motion sequences conditioned on past information and control signals.
We evaluate the models on a mixture of motion capture datasets of human locomotion with foot-step and bone-length analysis.
arXiv Detail & Related papers (2021-04-07T09:51:15Z) - Latent linear dynamics in spatiotemporal medical data [0.0]
We present an unsupervised model that identifies the underlying dynamics of the system, only based on the sequential images.
The model maps the input to a low-dimensional latent space wherein a linear relationship holds between a hidden state process and the observed latent process.
Knowledge of the system dynamics enables denoising, imputation of missing values and extrapolation of future image frames.
arXiv Detail & Related papers (2021-03-01T11:42:21Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
Group studies involving large cohorts of subjects are important to draw general conclusions about brain functional organization.
We propose a novel MultiView Independent Component Analysis model for group studies, where data from each subject are modeled as a linear combination of shared independent sources plus noise.
We demonstrate the usefulness of our approach first on fMRI data, where our model demonstrates improved sensitivity in identifying common sources among subjects.
arXiv Detail & Related papers (2020-06-11T17:29:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.