Multi-hop Upstream Anticipatory Traffic Signal Control with Deep Reinforcement Learning
- URL: http://arxiv.org/abs/2411.07271v2
- Date: Thu, 16 Jan 2025 21:09:57 GMT
- Title: Multi-hop Upstream Anticipatory Traffic Signal Control with Deep Reinforcement Learning
- Authors: Xiaocan Li, Xiaoyu Wang, Ilia Smirnov, Scott Sanner, Baher Abdulhai,
- Abstract summary: Coordination in traffic signal control is crucial for managing congestion in urban networks.<n>Our work introduces a novel concept based on Markov chain theory, namely textitmulti-hop upstream pressure<n>This farsighted and compact metric informs the deep reinforcement learning agent to preemptively clear the multi-hop upstream queues.
- Score: 24.687845741167884
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Coordination in traffic signal control is crucial for managing congestion in urban networks. Existing pressure-based control methods focus only on immediate upstream links, leading to suboptimal green time allocation and increased network delays. However, effective signal control inherently requires coordination across a broader spatial scope, as the effect of upstream traffic should influence signal control decisions at downstream intersections, impacting a large area in the traffic network. Although agent communication using neural network-based feature extraction can implicitly enhance spatial awareness, it significantly increases the learning complexity, adding an additional layer of difficulty to the challenging task of control in deep reinforcement learning. To address the issue of learning complexity and myopic traffic pressure definition, our work introduces a novel concept based on Markov chain theory, namely \textit{multi-hop upstream pressure}, which generalizes the conventional pressure to account for traffic conditions beyond the immediate upstream links. This farsighted and compact metric informs the deep reinforcement learning agent to preemptively clear the multi-hop upstream queues, guiding the agent to optimize signal timings with a broader spatial awareness. Simulations on synthetic and realistic (Toronto) scenarios demonstrate controllers utilizing multi-hop upstream pressure significantly reduce overall network delay by prioritizing traffic movements based on a broader understanding of upstream congestion.
Related papers
- Toward Dependency Dynamics in Multi-Agent Reinforcement Learning for Traffic Signal Control [8.312659530314937]
Reinforcement learning (RL) emerges as a promising data-driven approach for adaptive traffic signal control.
In this paper, we propose a novel Dynamic Reinforcement Update Strategy for Deep Q-Network (DQN-DPUS)
We show that the proposed strategy can speed up the convergence rate without sacrificing optimal exploration.
arXiv Detail & Related papers (2025-02-23T15:29:12Z) - Multi-Source Urban Traffic Flow Forecasting with Drone and Loop Detector Data [61.9426776237409]
Drone-captured data can create an accurate multi-sensor mobility observatory for large-scale urban networks.
A simple yet effective graph-based model HiMSNet is proposed to integrate multiple data modalities and learn-temporal correlations.
arXiv Detail & Related papers (2025-01-07T03:23:28Z) - Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - Communication-Control Codesign for Large-Scale Wireless Networked Control Systems [80.30532872347668]
Wireless Networked Control Systems (WNCSs) are essential to Industry 4.0, enabling flexible control in applications, such as drone swarms and autonomous robots.
We propose a practical WNCS model that captures correlated dynamics among multiple control loops with spatially distributed sensors and actuators sharing limited wireless resources over multi-state Markov block-fading channels.
We develop a Deep Reinforcement Learning (DRL) algorithm that efficiently handles the hybrid action space, captures communication-control correlations, and ensures robust training despite sparse cross-domain variables and floating control inputs.
arXiv Detail & Related papers (2024-10-15T06:28:21Z) - Reinforcement Learning for Adaptive Traffic Signal Control: Turn-Based and Time-Based Approaches to Reduce Congestion [2.733700237741334]
This paper explores the use of Reinforcement Learning to enhance traffic signal operations at intersections.
We introduce two RL-based algorithms: a turn-based agent, which dynamically prioritizes traffic signals based on real-time queue lengths, and a time-based agent, which adjusts signal phase durations according to traffic conditions.
Simulation results demonstrate that both RL algorithms significantly outperform conventional traffic signal control systems.
arXiv Detail & Related papers (2024-08-28T12:35:56Z) - MoveLight: Enhancing Traffic Signal Control through Movement-Centric Deep Reinforcement Learning [13.369840354712021]
MoveLight is a novel traffic signal control system that enhances urban traffic management through movement-centric deep reinforcement learning.
By leveraging detailed real-time data and advanced machine learning techniques, MoveLight overcomes the limitations of traditional traffic signal control methods.
arXiv Detail & Related papers (2024-07-24T14:17:16Z) - Towards Multi-agent Reinforcement Learning based Traffic Signal Control through Spatio-temporal Hypergraphs [19.107744041461316]
Traffic signal control systems (TSCSs) are integral to intelligent traffic management, fostering efficient vehicle flow.
Traditional approaches often simplify road networks into standard graphs.
We propose a novel TSCS framework to realize intelligent traffic control.
arXiv Detail & Related papers (2024-04-17T02:46:18Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
Traffic signal control (TSC) is crucial for reducing traffic congestion that leads to smoother traffic flow, reduced idling time, and mitigated CO2 emissions.
In this study, we explore the computer vision approach for TSC that modulates on-road traffic flows through visual observation.
We introduce a holistic traffic simulation framework called TrafficDojo towards vision-based TSC and its benchmarking.
arXiv Detail & Related papers (2024-03-11T16:42:29Z) - A Novel Multi-Agent Deep RL Approach for Traffic Signal Control [13.927155702352131]
We propose a Friend-Deep Q-network (Friend-DQN) approach for multiple traffic signal control in urban networks.
In particular, the cooperation between multiple agents can reduce the state-action space and thus speed up the convergence.
arXiv Detail & Related papers (2023-06-05T08:20:37Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem.
We propose a novel propagation delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2023-01-19T08:42:40Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
We propose a Laplacian enhanced low-rank tensor (LETC) framework featuring both lowrankness and multi-temporal correlations for large-scale traffic speed kriging.
We then design an efficient solution algorithm via several effective numeric techniques to scale up the proposed model to network-wide kriging.
arXiv Detail & Related papers (2022-10-21T07:25:57Z) - Lyapunov Function Consistent Adaptive Network Signal Control with Back
Pressure and Reinforcement Learning [9.797994846439527]
This study introduces a unified framework using Lyapunov control theory, defining specific Lyapunov functions respectively.
Building on insights from Lyapunov theory, this study designs a reward function for the Reinforcement Learning (RL)-based network signal control.
The proposed algorithm is compared with several traditional and RL-based methods under pure passenger car flow and heterogenous traffic flow including freight.
arXiv Detail & Related papers (2022-10-06T00:22:02Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem.
We propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that exploits the prior knowledge of road networks.
Our method can generate high-quality fine-grained traffic flow maps.
arXiv Detail & Related papers (2021-09-29T07:51:49Z) - A Graph Convolutional Network with Signal Phasing Information for
Arterial Traffic Prediction [63.470149585093665]
arterial traffic prediction plays a crucial role in the development of modern intelligent transportation systems.
Many existing studies on arterial traffic prediction only consider temporal measurements of flow and occupancy from loop sensors and neglect the rich spatial relationships between upstream and downstream detectors.
We fill this gap by enhancing a deep learning approach, Diffusion Convolutional Recurrent Neural Network, with spatial information generated from signal timing plans at targeted intersections.
arXiv Detail & Related papers (2020-12-25T01:40:29Z) - Area-wide traffic signal control based on a deep graph Q-Network (DGQN)
trained in an asynchronous manner [3.655021726150368]
Reinforcement learning (RL) algorithms have been widely applied in traffic signal studies.
There are, however, several problems in jointly controlling traffic lights for a large transportation network.
arXiv Detail & Related papers (2020-08-05T06:13:58Z) - IG-RL: Inductive Graph Reinforcement Learning for Massive-Scale Traffic
Signal Control [4.273991039651846]
Scaling adaptive traffic-signal control involves dealing with state and action spaces.
We introduce Inductive Graph Reinforcement Learning (IG-RL) based on graph-convolutional networks.
Our model can generalize to new road networks, traffic distributions, and traffic regimes.
arXiv Detail & Related papers (2020-03-06T17:17:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.