論文の概要: MSEG-VCUQ: Multimodal SEGmentation with Enhanced Vision Foundation Models, Convolutional Neural Networks, and Uncertainty Quantification for High-Speed Video Phase Detection Data
- arxiv url: http://arxiv.org/abs/2411.07463v2
- Date: Wed, 13 Nov 2024 02:39:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-14 12:31:40.060328
- Title: MSEG-VCUQ: Multimodal SEGmentation with Enhanced Vision Foundation Models, Convolutional Neural Networks, and Uncertainty Quantification for High-Speed Video Phase Detection Data
- Title(参考訳): MSEG-VCUQ:高速ビデオ位相検出データのための拡張ビジョン基礎モデル、畳み込みニューラルネットワーク、不確実性定量化によるマルチモーダルセグメンテーション
- Authors: Chika Maduabuchi, Ericmoore Jossou, Matteo Bucci,
- Abstract要約: 高速ビデオ(HSV)位相検出(PD)セグメンテーションは、原子炉、化学処理、電子冷却において不可欠である。
従来のセグメンテーションモデルは、マルチモーダルデータにおいてピクセルレベルの精度と一般化の問題に直面している。
MSEG-VCUQは、畳み込みニューラルネットワーク(CNN)とトランスフォーマーベースのビジョンモデルを活用したハイブリッドフレームワークであるVideoSAMを導入した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Purpose: High-speed video (HSV) phase detection (PD) segmentation is vital in nuclear reactors, chemical processing, and electronics cooling for detecting vapor, liquid, and microlayer phases. Traditional segmentation models face pixel-level accuracy and generalization issues in multimodal data. MSEG-VCUQ introduces VideoSAM, a hybrid framework leveraging convolutional neural networks (CNNs) and transformer-based vision models to enhance segmentation accuracy and generalizability across complex multimodal PD tasks. Methods: VideoSAM combines U-Net CNN and the Segment Anything Model (SAM) for advanced feature extraction and segmentation across diverse HSV PD modalities, spanning fluids like water, FC-72, nitrogen, and argon under varied heat flux conditions. The framework also incorporates uncertainty quantification (UQ) to assess pixel-based discretization errors, delivering reliable metrics such as contact line density and dry area fraction under experimental conditions. Results: VideoSAM outperforms SAM and modality-specific CNN models in segmentation accuracy, excelling in environments with complex phase boundaries, overlapping bubbles, and dynamic liquid-vapor interactions. Its hybrid architecture supports cross-dataset generalization, adapting effectively to varying modalities. The UQ module provides accurate error estimates, enhancing the reliability of segmentation outputs for advanced HSV PD research. Conclusion: MSEG-VCUQ, via VideoSAM, offers a robust solution for HSV PD segmentation, addressing previous limitations with advanced deep learning and UQ techniques. The open-source datasets and tools introduced enable scalable, precise, and adaptable segmentation for multimodal PD datasets, supporting advancements in HSV analysis and autonomous experimentation. The codes and data used for this paper are publicly available at: \url{https://github.com/chikap421/mseg_vcuq}
- Abstract(参考訳): 目的: 高速ビデオ(HSV)位相検出(PD)セグメンテーションは, 蒸気, 液体, マイクロ層相を検出するための原子炉, 化学処理, 電子冷却において不可欠である。
従来のセグメンテーションモデルは、マルチモーダルデータにおいてピクセルレベルの精度と一般化の問題に直面している。
MSEG-VCUQは、畳み込みニューラルネットワーク(CNN)とトランスフォーマーベースのビジョンモデルを活用するハイブリッドフレームワークであるVideoSAMを導入し、複雑なマルチモーダルPDタスク間のセグメンテーション精度と一般化性を向上させる。
方法: VideoSAMは、U-Net CNNとSAM(Segment Anything Model)を組み合わせて、様々な熱流束条件下で水、FC-72、窒素、アルゴンなどの流体にまたがる多様なHSV PDモダリティの高度な特徴抽出とセグメンテーションを行う。
このフレームワークはまた、不確実量化(UQ)を組み込んで画素ベースの離散化誤差を評価し、実験条件下で接触線密度や乾燥領域分画などの信頼性の高い指標を提供する。
結果: VideoSAM はSAM とModality-specific CNN モデルよりセグメンテーション精度が高く,複雑な相境界を持つ環境,オーバーラップバブル,動的液-蒸気相互作用に優れていた。
ハイブリッドアーキテクチャはクロスデータセットの一般化をサポートし、様々なモダリティに効果的に適応する。
UQモジュールは正確な誤差推定を提供し、高度なHSV PD研究のためのセグメンテーション出力の信頼性を高める。
結論: MSEG-VCUQは、VideoSAMを通じて、HSV PDセグメンテーションのための堅牢なソリューションを提供する。
導入されたオープンソースのデータセットとツールは、スケーラブルで正確で適応可能なマルチモーダルPDデータセットのセグメンテーションを可能にし、HSV分析と自律的な実験の進歩をサポートする。
この論文で使用されるコードとデータは、以下で公開されている。
関連論文リスト
- VideoSAM: A Large Vision Foundation Model for High-Speed Video Segmentation [0.0]
高速ビデオ(HSV)セグメンテーションは、沸騰熱伝達などの科学・産業応用における動的物理過程の解析に不可欠である。
位相検出のための多様なHSVデータセットを微調整したSegment Anything Model (SAM) の特殊適応であるVideoSAMを提案する。
論文 参考訳(メタデータ) (2024-10-22T18:46:36Z) - Prototype Learning Guided Hybrid Network for Breast Tumor Segmentation in DCE-MRI [58.809276442508256]
本稿では,畳み込みニューラルネットワーク(CNN)とトランスフォーマー層を組み合わせたハイブリッドネットワークを提案する。
プライベートおよびパブリックなDCE-MRIデータセットの実験結果から,提案したハイブリッドネットワークは最先端の手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-08-11T15:46:00Z) - CAF-YOLO: A Robust Framework for Multi-Scale Lesion Detection in Biomedical Imagery [0.0682074616451595]
CAF-YOLOは、畳み込みニューラルネットワーク(CNN)とトランスフォーマーの強みを活用する、医学的対象検出のための、巧妙で堅牢な方法である。
ACFMモジュールはグローバル機能とローカル機能の両方のモデリングを強化し、長期的な機能依存のキャプチャを可能にする。
MSNNは多様なスケールにまたがる特徴を抽出することで、マルチスケールの情報集約を改善する。
論文 参考訳(メタデータ) (2024-08-04T01:44:44Z) - Convolutional Monge Mapping Normalization for learning on sleep data [63.22081662149488]
我々は、CMMN(Convolutional Monge Mapping Normalization)と呼ばれる新しい手法を提案する。
CMMNは、そのパワースペクトル密度(PSD)をトレーニングデータに基づいて推定されるワッサーシュタインバリセンタに適応させるために、信号をフィルタリングする。
睡眠脳波データに関する数値実験により、CMMNはニューラルネットワークアーキテクチャから独立して、顕著で一貫したパフォーマンス向上をもたらすことが示された。
論文 参考訳(メタデータ) (2023-05-30T08:24:01Z) - Affinity Feature Strengthening for Accurate, Complete and Robust Vessel
Segmentation [48.638327652506284]
血管セグメンテーションは、冠動脈狭窄、網膜血管疾患、脳動脈瘤などの多くの医学的応用において重要である。
コントラストに敏感なマルチスケールアフィニティアプローチを用いて,幾何学的手法と画素単位のセグメンテーション特徴を連成的にモデル化する新しいアプローチであるAFNを提案する。
論文 参考訳(メタデータ) (2022-11-12T05:39:17Z) - RetiFluidNet: A Self-Adaptive and Multi-Attention Deep Convolutional
Network for Retinal OCT Fluid Segmentation [3.57686754209902]
OCTガイド下治療には網膜液の定量化が必要である。
RetiFluidNetと呼ばれる新しい畳み込みニューラルアーキテクチャは、多クラス網膜流体セグメンテーションのために提案されている。
モデルは、テクスチャ、コンテキスト、エッジといった特徴の階層的な表現学習の恩恵を受ける。
論文 参考訳(メタデータ) (2022-09-26T07:18:00Z) - Video-TransUNet: Temporally Blended Vision Transformer for CT VFSS
Instance Segmentation [11.575821326313607]
本稿では,TransUNetの深層学習フレームワークに時間的特徴ブレンドを組み込んだ医療用CTビデオのセグメンテーションのための深層アーキテクチャであるVideo-TransUNetを提案する。
特に,提案手法は,ResNet CNNバックボーンによるフレーム表現,テンポラルコンテキストモジュールによるマルチフレーム機能ブレンディング,UNetベースの畳み込みデコナールアーキテクチャによる複数ターゲットの再構築,などを実現する。
論文 参考訳(メタデータ) (2022-08-17T14:28:58Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
GradABM(GradABM)は、エージェントベースのモデリングのためのスケーラブルで微分可能な設計で、勾配に基づく学習と自動微分が可能である。
GradABMは、コモディティハードウェア上で数秒で数百万の人口をシミュレートし、ディープニューラルネットワークと統合し、異種データソースを取り込みます。
論文 参考訳(メタデータ) (2022-07-20T07:32:02Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
多要素代理モデリングは、異なるシミュレーション出力を融合させることで計算コストを削減する。
本稿では,多階層型階層型ニューラルネットワーク(MF-HNP)を提案する。
疫学および気候モデリングタスクにおけるMF-HNPの評価を行い、精度と不確実性評価の観点から競合性能を達成した。
論文 参考訳(メタデータ) (2022-06-10T04:54:13Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
我々は、人間の力で抽象化されたニューラルネットワークをデータレベルで注入できる新しい機械学習アーキテクチャを提案する。
具体的には、自然データと合成データに基づいて生成モデルを同時に訓練し、細胞数などの対象変数を確実に推定できる共有表現を学習する。
論文 参考訳(メタデータ) (2020-10-20T08:36:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。