Génération de bases de données images IR sous contraintes avec variabilité thermique intrinsèque des cibles
- URL: http://arxiv.org/abs/2411.07575v1
- Date: Tue, 12 Nov 2024 06:29:18 GMT
- Title: Génération de bases de données images IR sous contraintes avec variabilité thermique intrinsèque des cibles
- Authors: Jerome Gilles, Stephane Landeau, Tristan Dagobert, Philippe Chevalier, Christian Bolut,
- Abstract summary: We develop a principle which authorizes us to generate different thermal configurations of target signatures.
This method enables us to easily generate huge datasets for ATR algorithms performance evaluation.
- Score: 0.0
- License:
- Abstract: In this communication, we propose a method which permits to simulate images of targets in infrared imagery by superimposition of vehicle signatures in background, eventually with occultants. We develop a principle which authorizes us to generate different thermal configurations of target signatures. This method enables us to easily generate huge datasets for ATR algorithms performance evaluation.
Related papers
- IR image databases generation under target intrinsic thermal variability constraints [0.0]
We propose a method which superimpose targets and occultants on background under image quality metrics constraints to generate realistic images.
We also propose a method to generate target signatures with intrinsic thermal variability based on 3D models plated with real infrared textures.
arXiv Detail & Related papers (2024-11-12T06:29:27Z) - Retinex-RAWMamba: Bridging Demosaicing and Denoising for Low-Light RAW Image Enhancement [71.13353154514418]
Low-light image enhancement, particularly in cross-domain tasks such as mapping from the raw domain to the sRGB domain, remains a significant challenge.
We present a novel Mamba scanning mechanism, called RAWMamba, to effectively handle raw images with different CFAs.
We also present a Retinex Decomposition Module (RDM) grounded in Retinex prior, which decouples illumination from reflectance to facilitate more effective denoising and automatic non-linear exposure correction.
arXiv Detail & Related papers (2024-09-11T06:12:03Z) - SIRST-5K: Exploring Massive Negatives Synthesis with Self-supervised
Learning for Robust Infrared Small Target Detection [53.19618419772467]
Single-frame infrared small target (SIRST) detection aims to recognize small targets from clutter backgrounds.
With the development of Transformer, the scale of SIRST models is constantly increasing.
With a rich diversity of infrared small target data, our algorithm significantly improves the model performance and convergence speed.
arXiv Detail & Related papers (2024-03-08T16:14:54Z) - Image Inpainting via Tractable Steering of Diffusion Models [54.13818673257381]
This paper proposes to exploit the ability of Tractable Probabilistic Models (TPMs) to exactly and efficiently compute the constrained posterior.
Specifically, this paper adopts a class of expressive TPMs termed Probabilistic Circuits (PCs)
We show that our approach can consistently improve the overall quality and semantic coherence of inpainted images with only 10% additional computational overhead.
arXiv Detail & Related papers (2023-11-28T21:14:02Z) - Zero-shot Composed Text-Image Retrieval [72.43790281036584]
We consider the problem of composed image retrieval (CIR)
It aims to train a model that can fuse multi-modal information, e.g., text and images, to accurately retrieve images that match the query, extending the user's expression ability.
arXiv Detail & Related papers (2023-06-12T17:56:01Z) - Thermal Infrared Image Inpainting via Edge-Aware Guidance [8.630992878659084]
In this paper, we propose a novel task -- Thermal Infrared Image Inpainting.
We adopt the edge generator to complete the canny edges of broken TIR images.
The completed edges are projected to the normalization weights and biases to enhance edge awareness of the model.
Experiments demonstrate that our method outperforms state-of-the-art image inpainting approaches on FLIR thermal dataset.
arXiv Detail & Related papers (2022-10-28T09:06:54Z) - Toward Data-Driven STAP Radar [23.333816677794115]
We characterize our data-driven approach to space-time adaptive processing (STAP) radar.
We generate a rich example dataset of received radar signals by randomly placing targets of variable strengths in a predetermined region.
For each data sample within this region, we generate heatmap tensors in range, azimuth, and elevation of the output power of a beamformer.
In an airborne scenario, the moving radar creates a sequence of these time-indexed image stacks, resembling a video.
arXiv Detail & Related papers (2022-01-26T02:28:13Z) - Meta-UDA: Unsupervised Domain Adaptive Thermal Object Detection using
Meta-Learning [64.92447072894055]
Infrared (IR) cameras are robust under adverse illumination and lighting conditions.
We propose an algorithm meta-learning framework to improve existing UDA methods.
We produce a state-of-the-art thermal detector for the KAIST and DSIAC datasets.
arXiv Detail & Related papers (2021-10-07T02:28:18Z) - Self-training Guided Adversarial Domain Adaptation For Thermal Imagery [0.12891210250935145]
We propose an unsupervised domain adaptation method which does not require RGB-to-thermal image pairs.
We employ large-scale RGB dataset MS-COCO as source domain and thermal dataset FLIR ADAS as target domain.
To perform self-training, pseudo labels are assigned to the samples on the target thermal domain to learn more generalized representations for the target domain.
arXiv Detail & Related papers (2021-06-14T05:17:21Z) - Robust pedestrian detection in thermal imagery using synthesized images [39.33977680993236]
We propose a method for improving pedestrian detection in the thermal domain using two stages.
First, a generative data augmentation approach is used, then a domain adaptation method using generated data adapts an RGB pedestrian detector.
Our detector achieves the best single-modality detection results on KAIST with respect to the state-of-the-art.
arXiv Detail & Related papers (2021-02-03T11:08:31Z) - Exploring Thermal Images for Object Detection in Underexposure Regions
for Autonomous Driving [67.69430435482127]
Underexposure regions are vital to construct a complete perception of the surroundings for safe autonomous driving.
The availability of thermal cameras has provided an essential alternate to explore regions where other optical sensors lack in capturing interpretable signals.
This work proposes a domain adaptation framework which employs a style transfer technique for transfer learning from visible spectrum images to thermal images.
arXiv Detail & Related papers (2020-06-01T09:59:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.