論文の概要: Reinforcement Learning Framework for Quantitative Trading
- arxiv url: http://arxiv.org/abs/2411.07585v1
- Date: Tue, 12 Nov 2024 06:44:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-13 13:20:14.060306
- Title: Reinforcement Learning Framework for Quantitative Trading
- Title(参考訳): 定量的取引のための強化学習フレームワーク
- Authors: Alhassan S. Yasin, Prabdeep S. Gill,
- Abstract要約: 個々の証券の潜在的な市場動向をよりよく理解するために、金融指標の有効利用には大きな断絶がある。
本研究は、金融指標を用いた正と負の購買行動を効果的に区別するRLエージェントの能力を高めることにより、これらの複雑さに対処する試みである。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The inherent volatility and dynamic fluctuations within the financial stock market underscore the necessity for investors to employ a comprehensive and reliable approach that integrates risk management strategies, market trends, and the movement trends of individual securities. By evaluating specific data, investors can make more informed decisions. However, the current body of literature lacks substantial evidence supporting the practical efficacy of reinforcement learning (RL) agents, as many models have only demonstrated success in back testing using historical data. This highlights the urgent need for a more advanced methodology capable of addressing these challenges. There is a significant disconnect in the effective utilization of financial indicators to better understand the potential market trends of individual securities. The disclosure of successful trading strategies is often restricted within financial markets, resulting in a scarcity of widely documented and published strategies leveraging RL. Furthermore, current research frequently overlooks the identification of financial indicators correlated with various market trends and their potential advantages. This research endeavors to address these complexities by enhancing the ability of RL agents to effectively differentiate between positive and negative buy/sell actions using financial indicators. While we do not address all concerns, this paper provides deeper insights and commentary on the utilization of technical indicators and their benefits within reinforcement learning. This work establishes a foundational framework for further exploration and investigation of more complex scenarios.
- Abstract(参考訳): 金融株市場のボラティリティと動的変動は、リスク管理戦略、市場動向、個々の証券の動向を総合的かつ信頼性の高いアプローチで統合する投資家の必要性を浮き彫りにしている。
具体的なデータを評価することで、投資家はより情報的な決定を下すことができる。
しかし、現在の文献の体系には強化学習(RL)エージェントの実用的有効性を裏付ける重要な証拠が欠けている。
このことは、これらの課題に対処できるより高度な方法論の緊急の必要性を強調している。
個々の証券の潜在的な市場動向をよりよく理解するために、金融指標の有効利用には大きな断絶がある。
成功した貿易戦略の開示は金融市場内で制限されることが多く、その結果、RLを活用した広く文書化され公開された戦略が不足する。
さらに、近年の研究は、様々な市場動向と潜在的優位性に相関する金融指標の特定をしばしば見落としている。
本研究は、金融指標を用いた正と負の購買行動を効果的に区別するRLエージェントの能力を高めることにより、これらの複雑さに対処する試みである。
本論文は、すべての懸念に対処するわけではないが、技術指標の利用とその強化学習におけるメリットについて、より深い洞察と解説を提供する。
この研究は、より複雑なシナリオのさらなる調査と調査のための基礎的な枠組みを確立する。
関連論文リスト
- When AI Meets Finance (StockAgent): Large Language Model-based Stock Trading in Simulated Real-world Environments [55.19252983108372]
LLMによって駆動される、StockAgentと呼ばれるマルチエージェントAIシステムを開発した。
StockAgentを使えば、ユーザーはさまざまな外部要因が投資家取引に与える影響を評価することができる。
AIエージェントに基づく既存のトレーディングシミュレーションシステムに存在するテストセットのリーク問題を回避する。
論文 参考訳(メタデータ) (2024-07-15T06:49:30Z) - Developing A Multi-Agent and Self-Adaptive Framework with Deep Reinforcement Learning for Dynamic Portfolio Risk Management [1.2016264781280588]
ポートフォリオ全体のリターンと潜在的なリスクの間のトレードオフのバランスをとるために,マルチエージェント強化学習(RL)アプローチを提案する。
得られた実験結果から,提案したMASAフレームワークの有効性が明らかとなった。
論文 参考訳(メタデータ) (2024-02-01T11:31:26Z) - Harnessing Deep Q-Learning for Enhanced Statistical Arbitrage in
High-Frequency Trading: A Comprehensive Exploration [0.0]
強化学習(Reinforcement Learning、RL)は、エージェントが環境と対話することで学習する機械学習の分野である。
本稿では,HFT(High-Frequency Trading)シナリオに適した統計仲裁手法におけるRLの統合について述べる。
広範なシミュレーションやバックテストを通じて、RLはトレーディング戦略の適応性を高めるだけでなく、収益性指標の改善やリスク調整されたリターンの期待も示している。
論文 参考訳(メタデータ) (2023-09-13T06:15:40Z) - IMM: An Imitative Reinforcement Learning Approach with Predictive
Representation Learning for Automatic Market Making [33.23156884634365]
強化学習技術は量的取引において顕著な成功を収めた。
既存のRLベースのマーケットメイキング手法のほとんどは、単価レベルの戦略の最適化に重点を置いている。
Imitative Market Maker (IMM) は、準最適信号に基づく専門家の知識と直接的な政策相互作用の両方を活用する新しいRLフレームワークである。
論文 参考訳(メタデータ) (2023-08-17T11:04:09Z) - HireVAE: An Online and Adaptive Factor Model Based on Hierarchical and
Regime-Switch VAE [113.47287249524008]
オンラインで適応的な環境で株価予測を行うファクターモデルを構築することは、依然としてオープンな疑問である。
本稿では,オンラインおよび適応型要素モデルであるHireVAEを,市場状況とストックワイド潜在要因の関係を埋め込んだ階層型潜在空間として提案する。
4つの一般的な実市場ベンチマークにおいて、提案されたHireVAEは、以前の手法よりもアクティブリターンの点で優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2023-06-05T12:58:13Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
ニュース見出しを用いて,ChatGPTのような大規模言語モデル(LLM)の株価変動を予測する能力について述べる。
我々は,情報容量制約,過小反応,制限対アビタージュ,LLMを組み込んだ理論モデルを構築した。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z) - Identifying Trades Using Technical Analysis and ML/DL Models [1.181206257787103]
株式市場の価格予測の重要性は過大評価できない。
投資家は投資決定をインフォームドし、リスクを管理し、金融システムの安定性を確保することができる。
ディープラーニングは株価を正確に予測する上で有望だが、まだ多くの研究が続けられている。
論文 参考訳(メタデータ) (2023-04-12T18:46:35Z) - Factor Investing with a Deep Multi-Factor Model [123.52358449455231]
我々は、業界中立化と市場中立化モジュールを明確な財務見識をもって取り入れた、新しい深層多要素モデルを開発する。
実世界の株式市場データによるテストは、我々の深層多要素モデルの有効性を示している。
論文 参考訳(メタデータ) (2022-10-22T14:47:11Z) - Deep Q-Learning Market Makers in a Multi-Agent Simulated Stock Market [58.720142291102135]
本稿では,エージェント・ベースの観点から,これらのマーケット・メーカーの戦略に関する研究に焦点をあてる。
模擬株式市場における知的市場マーカー作成のための強化学習(Reinforcement Learning, RL)の適用を提案する。
論文 参考訳(メタデータ) (2021-12-08T14:55:21Z) - Trader-Company Method: A Metaheuristic for Interpretable Stock Price
Prediction [3.9189409002585562]
金融市場では、機械学習ベースのモデルの実践的応用を妨げるいくつかの課題がある。
本稿では,金融機関とトレーダーの役割を模倣する新たな進化モデルであるTrader-Company法を提案する。
トレーダーと呼ばれる複数の弱い学習者からの提案を集約し、将来の株式リターンを予測します。
論文 参考訳(メタデータ) (2020-12-18T13:19:27Z) - Reinforcement-Learning based Portfolio Management with Augmented Asset
Movement Prediction States [71.54651874063865]
ポートフォリオマネジメント(PM)は、最大利益や最小リスクといった投資目標を達成することを目的としている。
本稿では,PMのための新しいステート拡張RLフレームワークであるSARLを提案する。
当社の枠組みは, 金融PMにおける2つのユニークな課題に対処することを目的としている。(1) データの異種データ -- 資産毎の収集情報は通常, 多様性, ノイズ, 不均衡(ニュース記事など), (2) 環境の不確実性 -- 金融市場は多様で非定常である。
論文 参考訳(メタデータ) (2020-02-09T08:10:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。