Knowledge-Augmented Multimodal Clinical Rationale Generation for Disease Diagnosis with Small Language Models
- URL: http://arxiv.org/abs/2411.07611v3
- Date: Mon, 28 Apr 2025 03:28:51 GMT
- Title: Knowledge-Augmented Multimodal Clinical Rationale Generation for Disease Diagnosis with Small Language Models
- Authors: Shuai Niu, Jing Ma, Hongzhan Lin, Liang Bai, Zhihua Wang, Yida Xu, Yunya Song, Xian Yang,
- Abstract summary: Small language models (SLMs) are efficient but lack advanced reasoning for integrating multimodal medical data.<n>We propose ClinRaGen, enhancing SLMs by leveraging LLM-derived reasoning ability via rationale distillation and domain knowledge injection.<n> Experiments on real-world medical datasets show that ClinRaGen achieves state-of-the-art performance in disease diagnosis and rationale generation.
- Score: 14.136585695164426
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Interpretation is critical for disease diagnosis, but existing models struggle to balance predictive accuracy with human-understandable rationales. While large language models (LLMs) offer strong reasoning abilities, their clinical use is limited by high computational costs and restricted multimodal reasoning ability. Small language models (SLMs) are efficient but lack advanced reasoning for integrating multimodal medical data. In addition, both LLMs and SLMs lack of domain knowledge for trustworthy reasoning. Therefore, we propose ClinRaGen, enhancing SLMs by leveraging LLM-derived reasoning ability via rationale distillation and domain knowledge injection for trustworthy multimodal rationale generation. Key innovations include a sequential rationale distillation framework that equips SLMs with LLM-comparable mutlimodal reasoning abilities, and a knowledge-augmented attention mechanism that jointly unifies multimodal representation from time series and textual data in a same encoding space, enabling it naturally interpreted by SLMs while incorporating domain knowledge for reliable rationale generation. Experiments on real-world medical datasets show that ClinRaGen achieves state-of-the-art performance in disease diagnosis and rationale generation, demonstrating the effectiveness of combining LLM-driven reasoning with knowledge augmentation for improved interpretability.
Related papers
- Limitations of Large Language Models in Clinical Problem-Solving Arising from Inflexible Reasoning [3.3482359447109866]
Large Language Models (LLMs) have attained human-level accuracy on medical question-answer (QA) benchmarks.
Their limitations in navigating open-ended clinical scenarios have recently been shown.
We present the medical abstraction and reasoning corpus (M-ARC)
We find that LLMs, including current state-of-the-art o1 and Gemini models, perform poorly compared to physicians on M-ARC.
arXiv Detail & Related papers (2025-02-05T18:14:27Z) - Can MLLMs Reason in Multimodality? EMMA: An Enhanced MultiModal ReAsoning Benchmark [73.27104042215207]
We introduce EMMA, a benchmark targeting organic multimodal reasoning across mathematics, physics, chemistry, and coding.
EMMA tasks demand advanced cross-modal reasoning that cannot be addressed by reasoning independently in each modality.
Our evaluation of state-of-the-art MLLMs on EMMA reveals significant limitations in handling complex multimodal and multi-step reasoning tasks.
arXiv Detail & Related papers (2025-01-09T18:55:52Z) - Mitigating Hallucinations of Large Language Models in Medical Information Extraction via Contrastive Decoding [92.32881381717594]
We introduce ALternate Contrastive Decoding (ALCD) to solve hallucination issues in medical information extraction tasks.
ALCD demonstrates significant improvements in resolving hallucination issues compared to conventional decoding methods.
arXiv Detail & Related papers (2024-10-21T07:19:19Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
Multimodal Large Language Models (MLLMs) have recently received substantial interest, which shows their emerging potential as general-purpose models for various vision-language tasks.
Retrieval augmentation techniques have proven to be effective plugins for both LLMs and MLLMs.
In this study, we propose multimodal adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training (RA-BLIP), a novel retrieval-augmented framework for various MLLMs.
arXiv Detail & Related papers (2024-10-18T03:45:19Z) - Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KARE is a novel framework that integrates knowledge graph (KG) community-level retrieval with large language models (LLMs) reasoning.
Extensive experiments demonstrate that KARE outperforms leading models by up to 10.8-15.0% on MIMIC-III and 12.6-12.7% on MIMIC-IV for mortality and readmission predictions.
arXiv Detail & Related papers (2024-10-06T18:46:28Z) - KARGEN: Knowledge-enhanced Automated Radiology Report Generation Using Large Language Models [39.831976458410864]
This paper presents KARGEN, a Knowledge-enhanced Automated radiology Report GENeration framework based on Large Language Models.
The framework integrates a knowledge graph to unlock chest disease-related knowledge within the LLM to enhance the clinical utility of generated reports.
Our approach demonstrates promising results on the MIMIC-CXR and IU-Xray datasets.
arXiv Detail & Related papers (2024-09-09T06:57:22Z) - Assessing and Enhancing Large Language Models in Rare Disease Question-answering [64.32570472692187]
We introduce a rare disease question-answering (ReDis-QA) dataset to evaluate the performance of Large Language Models (LLMs) in diagnosing rare diseases.
We collected 1360 high-quality question-answer pairs within the ReDis-QA dataset, covering 205 rare diseases.
We then benchmarked several open-source LLMs, revealing that diagnosing rare diseases remains a significant challenge for these models.
Experiment results demonstrate that ReCOP can effectively improve the accuracy of LLMs on the ReDis-QA dataset by an average of 8%.
arXiv Detail & Related papers (2024-08-15T21:09:09Z) - MedTsLLM: Leveraging LLMs for Multimodal Medical Time Series Analysis [6.30440420617113]
We introduce MedTsLLM, a general multimodal large language model (LLM) framework that integrates time series data and rich contextual information in the form of text to analyze physiological signals.
We perform three tasks with clinical relevance: semantic segmentation, boundary detection, and anomaly detection in time series.
Our model outperforms state-of-the-art baselines, including deep learning models, other LLMs, and clinical methods across multiple medical domains.
arXiv Detail & Related papers (2024-08-14T18:57:05Z) - CliBench: A Multifaceted and Multigranular Evaluation of Large Language Models for Clinical Decision Making [16.310913127940857]
We introduce CliBench, a novel benchmark developed from the MIMIC IV dataset.
This benchmark offers a comprehensive and realistic assessment of LLMs' capabilities in clinical diagnosis.
We conduct a zero-shot evaluation of leading LLMs to assess their proficiency in clinical decision-making.
arXiv Detail & Related papers (2024-06-14T11:10:17Z) - XAI4LLM. Let Machine Learning Models and LLMs Collaborate for Enhanced In-Context Learning in Healthcare [16.79952669254101]
We develop a novel method for zero-shot/few-shot in-context learning (ICL) using a multi-layered structured prompt.
We also explore the efficacy of two communication styles between the user and Large Language Models (LLMs)
Our study systematically evaluates the diagnostic accuracy and risk factors, including gender bias and false negative rates.
arXiv Detail & Related papers (2024-05-10T06:52:44Z) - REALM: RAG-Driven Enhancement of Multimodal Electronic Health Records
Analysis via Large Language Models [19.62552013839689]
Existing models often lack the medical context relevent to clinical tasks, prompting the incorporation of external knowledge.
We propose REALM, a Retrieval-Augmented Generation (RAG) driven framework to enhance multimodal EHR representations.
Our experiments on MIMIC-III mortality and readmission tasks showcase the superior performance of our REALM framework over baselines.
arXiv Detail & Related papers (2024-02-10T18:27:28Z) - Discovery of the Hidden World with Large Language Models [95.58823685009727]
This paper presents Causal representatiOn AssistanT (COAT) that introduces large language models (LLMs) to bridge the gap.
LLMs are trained on massive observations of the world and have demonstrated great capability in extracting key information from unstructured data.
COAT also adopts CDs to find causal relations among the identified variables as well as to provide feedback to LLMs to iteratively refine the proposed factors.
arXiv Detail & Related papers (2024-02-06T12:18:54Z) - Large Language Model Distilling Medication Recommendation Model [61.89754499292561]
We harness the powerful semantic comprehension and input-agnostic characteristics of Large Language Models (LLMs)
Our research aims to transform existing medication recommendation methodologies using LLMs.
To mitigate this, we have developed a feature-level knowledge distillation technique, which transfers the LLM's proficiency to a more compact model.
arXiv Detail & Related papers (2024-02-05T08:25:22Z) - Natural Language Programming in Medicine: Administering Evidence Based Clinical Workflows with Autonomous Agents Powered by Generative Large Language Models [29.05425041393475]
Generative Large Language Models (LLMs) hold significant promise in healthcare.
This study assessed the potential of LLMs to function as autonomous agents in a simulated tertiary care medical center.
arXiv Detail & Related papers (2024-01-05T15:09:57Z) - Large Language Models Illuminate a Progressive Pathway to Artificial
Healthcare Assistant: A Review [16.008511195589925]
Large language models (LLMs) have shown promising capabilities in mimicking human-level language comprehension and reasoning.
This paper provides a comprehensive review on the applications and implications of LLMs in medicine.
arXiv Detail & Related papers (2023-11-03T13:51:36Z) - Redefining Digital Health Interfaces with Large Language Models [69.02059202720073]
Large Language Models (LLMs) have emerged as general-purpose models with the ability to process complex information.
We show how LLMs can provide a novel interface between clinicians and digital technologies.
We develop a new prognostic tool using automated machine learning.
arXiv Detail & Related papers (2023-10-05T14:18:40Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
Large language models (LLMs) have demonstrated the ability to overcome various limitations of formal Knowledge Representation (KR) systems.
LLMs excel most in abductive reasoning, followed by deductive reasoning, while they are least effective at inductive reasoning.
We study single-task training, multi-task training, and "chain-of-thought" knowledge distillation fine-tuning technique to assess the performance of model.
arXiv Detail & Related papers (2023-10-02T01:00:50Z) - Chain-of-Thought Prompt Distillation for Multimodal Named Entity
Recognition and Multimodal Relation Extraction [8.169359626365619]
We generate a textitchain of thought (CoT) -- a sequence of intermediate reasoning steps.
We present a novel conditional prompt distillation method to assimilate the commonsense reasoning ability from large language models.
Our approach attains state-of-the-art accuracy and manifests a plethora of advantages concerning interpretability, data efficiency, and cross-domain generalization.
arXiv Detail & Related papers (2023-06-25T04:33:56Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
Large language models (LLMs) have shown the potential to accelerate clinical curation via few-shot in-context learning.
They still struggle with issues regarding accuracy and interpretability, especially in mission-critical domains such as health.
Here, we explore a general mitigation framework using self-verification, which leverages the LLM to provide provenance for its own extraction and check its own outputs.
arXiv Detail & Related papers (2023-05-30T22:05:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.