Quantum combinatorial optimization beyond the variational paradigm: simple schedules for hard problems
- URL: http://arxiv.org/abs/2411.07646v1
- Date: Tue, 12 Nov 2024 08:54:13 GMT
- Title: Quantum combinatorial optimization beyond the variational paradigm: simple schedules for hard problems
- Authors: Tim Bode, Krish Ramesh, Tobias Stollenwerk,
- Abstract summary: We show how to use the spin-state path path to shape the geometry of quantum adiabatic evolution.
Our method works for large systems and may thus be used to improve the performance of state-of-the-art quantum devices.
- Score: 0.22120851074630177
- License:
- Abstract: Advances in quantum algorithms suggest a tentative scaling advantage on certain combinatorial optimization problems. Recent work, however, has also reinforced the idea that barren plateaus render variational algorithms ineffective on large Hilbert spaces. Hence, finding annealing protocols by variation ultimately appears to be difficult. Similarly, the adiabatic theorem fails on hard problem instances with first-order quantum phase transitions. Here, we show how to use the spin coherent-state path integral to shape the geometry of quantum adiabatic evolution, leading to annealing protocols at polynomial overhead that provide orders-of-magnitude improvements in the probability to measure optimal solutions, relative to linear protocols. These improvements are not obtained on a controllable toy problem but on randomly generated hard instances (Sherrington-Kirkpatrick and Maximum 2-Satisfiability), making them generic and robust. Our method works for large systems and may thus be used to improve the performance of state-of-the-art quantum devices.
Related papers
- Bias-field digitized counterdiabatic quantum optimization [39.58317527488534]
We call this protocol bias-field digitizeddiabatic quantum optimization (BF-DCQO)
Our purely quantum approach eliminates the dependency on classical variational quantum algorithms.
It achieves scaling improvements in ground state success probabilities, increasing by up to two orders of magnitude.
arXiv Detail & Related papers (2024-05-22T18:11:42Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Robust nonadiabatic geometric quantum computation by dynamical
correction [0.0]
We propose a robust scheme for nonadiabatic geometric quantum computation (NGQC) combining with the dynamical correction technique.
We numerically show that our scheme can greatly improve the gate robustness in previous protocols.
Our scheme provides a promising alternation for the future scalable fault-tolerant quantum computation.
arXiv Detail & Related papers (2022-08-02T14:09:48Z) - How Much Entanglement Do Quantum Optimization Algorithms Require? [0.0]
We study the entanglement generated during the execution of ADAPT-QAOA.
By incrementally restricting this flexibility, we find that a larger amount of entanglement entropy at earlier stages coincides with faster convergence at later stages.
arXiv Detail & Related papers (2022-05-24T18:00:02Z) - Surviving The Barren Plateau in Variational Quantum Circuits with
Bayesian Learning Initialization [0.0]
Variational quantum-classical hybrid algorithms are seen as a promising strategy for solving practical problems on quantum computers in the near term.
Here, we introduce the fast-and-slow algorithm, which uses gradients to identify a promising region in Bayesian space.
Our results move variational quantum algorithms closer to their envisioned applications in quantum chemistry, optimization, and quantum simulation problems.
arXiv Detail & Related papers (2022-03-04T17:48:57Z) - Quantum walk in a reinforced free-energy landscape: Quantum annealing
with reinforcement [0.0]
Reinforcement is one of the strategies that can be used to circumvent the exponentially small energy gaps of the system.
In this study, we take a local entropy in the configuration space for the reinforcement and apply the algorithm to a number of easy and hard optimization problems.
arXiv Detail & Related papers (2022-02-22T14:16:27Z) - Quadratic Unconstrained Binary Optimisation via Quantum-Inspired
Annealing [58.720142291102135]
We present a classical algorithm to find approximate solutions to instances of quadratic unconstrained binary optimisation.
We benchmark our approach for large scale problem instances with tuneable hardness and planted solutions.
arXiv Detail & Related papers (2021-08-18T09:26:17Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Adiabatic Quantum Graph Matching with Permutation Matrix Constraints [75.88678895180189]
Matching problems on 3D shapes and images are frequently formulated as quadratic assignment problems (QAPs) with permutation matrix constraints, which are NP-hard.
We propose several reformulations of QAPs as unconstrained problems suitable for efficient execution on quantum hardware.
The proposed algorithm has the potential to scale to higher dimensions on future quantum computing architectures.
arXiv Detail & Related papers (2021-07-08T17:59:55Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Q-Match: Iterative Shape Matching via Quantum Annealing [64.74942589569596]
Finding shape correspondences can be formulated as an NP-hard quadratic assignment problem (QAP)
This paper proposes Q-Match, a new iterative quantum method for QAPs inspired by the alpha-expansion algorithm.
Q-Match can be applied for shape matching problems iteratively, on a subset of well-chosen correspondences, allowing us to scale to real-world problems.
arXiv Detail & Related papers (2021-05-06T17:59:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.