Robust nonadiabatic geometric quantum computation by dynamical
correction
- URL: http://arxiv.org/abs/2208.01472v1
- Date: Tue, 2 Aug 2022 14:09:48 GMT
- Title: Robust nonadiabatic geometric quantum computation by dynamical
correction
- Authors: Ming-Jie Liang, Zheng-Yuan Xue
- Abstract summary: We propose a robust scheme for nonadiabatic geometric quantum computation (NGQC) combining with the dynamical correction technique.
We numerically show that our scheme can greatly improve the gate robustness in previous protocols.
Our scheme provides a promising alternation for the future scalable fault-tolerant quantum computation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Besides the intrinsic noise resilience property, nonadiabatic geometric
phases are of the fast evolution nature, and thus can naturally be used in
constructing quantum gates with excellent performance, i.e., the so-called
nonadiabatic geometric quantum computation (NGQC). However, previous
single-loop NGQC schemes are sensitive to the operational control error, i.e.,
the $X$ error, due to the limitations of the implementation. Here, we propose a
robust scheme for NGQC combining with the dynamical correction technique, which
still uses only simplified pulses, and thus being experimental friendly. We
numerically show that our scheme can greatly improve the gate robustness in
previous protocols, retaining the intrinsic merit of geometric phases.
Furthermore, to fight against the dephasing noise, due to the $Z$ error, we can
incorporate the decoherence-free subspace encoding strategy. In this way, our
scheme can be robust against both types of errors. Finally, we also propose how
to implement the scheme with encoding on superconducting quantum circuits with
experimentally demonstrated technology. Therefore, due to the intrinsic
robustness, our scheme provides a promising alternation for the future scalable
fault-tolerant quantum computation.
Related papers
- Dynamically Optimized Nonadiabatic Holonomic Quantum Computation [3.536421391532772]
We propose a dynamically optimized NHQC scheme based on dynamically corrected gate technique.
It is found that our scheme can correct the $X$ error up to fourth order.
Our proposed scheme offers a prospective way to the realization of scalable fault-tolerant holonomic quantum computation.
arXiv Detail & Related papers (2024-09-24T02:03:05Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Fault-tolerant quantum architectures based on erasure qubits [49.227671756557946]
We exploit the idea of erasure qubits, relying on an efficient conversion of the dominant noise into erasures at known locations.
We propose and optimize QEC schemes based on erasure qubits and the recently-introduced Floquet codes.
Our results demonstrate that, despite being slightly more complex, QEC schemes based on erasure qubits can significantly outperform standard approaches.
arXiv Detail & Related papers (2023-12-21T17:40:18Z) - Dynamical-Corrected Nonadiabatic Geometric Quantum Computation [9.941657239723108]
We present an effective geometric scheme combined with a general dynamical-corrected technique.
Our scheme represents a promising way to explore large-scale fault-tolerant quantum computation.
arXiv Detail & Related papers (2023-02-08T16:18:09Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Robust Nonadiabatic Holonomic Quantum Gates on Decoherence-Protected
Qubits [4.18804572788063]
We propose a scheme for quantum manipulation by combining the geometric phase approach with the dynamical correction technique.
Our scheme is implemented on the superconducting circuits, which also simplifies previous implementations.
arXiv Detail & Related papers (2021-10-06T14:39:52Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Ultrafast Holonomic Quantum Gates [4.354697470999286]
We propose a nonadiabatic holonomic quantum scheme with detuned interactions on $Delta$-type three-level system.
Our numerical simulations show that the gate robustness is also stronger than previous schemes.
We present an implementation of our proposal on superconducting quantum circuits, with a decoherence-free subspace encoding.
arXiv Detail & Related papers (2021-08-03T14:31:38Z) - Dynamically Corrected Nonadiabatic Holonomic Quantum Gates [2.436681150766912]
The noise-resilience feature of nonadiabatic holonomic quantum computation (NHQC) still needs to be improved.
We propose a general protocol of universal NHQC with simplified control, which can greatly suppress the effect of accompanied X errors.
Numerical simulation shows that the performance of our gate can be much better than previous protocols.
arXiv Detail & Related papers (2020-12-16T15:52:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.