論文の概要: Query Optimization for Parametric Knowledge Refinement in Retrieval-Augmented Large Language Models
- arxiv url: http://arxiv.org/abs/2411.07820v1
- Date: Tue, 12 Nov 2024 14:12:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-13 13:17:54.290122
- Title: Query Optimization for Parametric Knowledge Refinement in Retrieval-Augmented Large Language Models
- Title(参考訳): 検索型大規模言語モデルにおけるパラメトリック知識再構成のためのクエリ最適化
- Authors: Youan Cong, Cheng Wang, Pritom Saha Akash, Kevin Chen-Chuan Chang,
- Abstract要約: ERRRフレームワークは、検索-拡張生成(RAG)システムにおける事前検索情報ギャップを橋渡しするように設計されている。
RAGで使用される従来のクエリ最適化手法とは異なり、ERRRフレームワークはLarge Language Models (LLM) から知識を抽出することから始まる。
- 参考スコア(独自算出の注目度): 26.353428245346166
- License:
- Abstract: We introduce the \textit{Extract-Refine-Retrieve-Read} (ERRR) framework, a novel approach designed to bridge the pre-retrieval information gap in Retrieval-Augmented Generation (RAG) systems through query optimization tailored to meet the specific knowledge requirements of Large Language Models (LLMs). Unlike conventional query optimization techniques used in RAG, the ERRR framework begins by extracting parametric knowledge from LLMs, followed by using a specialized query optimizer for refining these queries. This process ensures the retrieval of only the most pertinent information essential for generating accurate responses. Moreover, to enhance flexibility and reduce computational costs, we propose a trainable scheme for our pipeline that utilizes a smaller, tunable model as the query optimizer, which is refined through knowledge distillation from a larger teacher model. Our evaluations on various question-answering (QA) datasets and with different retrieval systems show that ERRR consistently outperforms existing baselines, proving to be a versatile and cost-effective module for improving the utility and accuracy of RAG systems.
- Abstract(参考訳): 本稿では,Large Language Models (LLMs) の特定の知識要件を満たすように調整されたクエリ最適化により,RAG(Retrieval-Augmented Generation) システムにおける事前検索情報ギャップを橋渡しする,新たなアプローチである ERRR (textit{Extract-Refine-Retrieve-Read}) フレームワークを紹介する。
RAGで使用される従来のクエリ最適化手法とは異なり、ERRRフレームワークはLLMからパラメトリック知識を抽出し、その後、クエリを精算するための特別なクエリオプティマイザを使用する。
このプロセスは、正確な応答を生成するのに必要な最も重要な情報のみを検索することを保証する。
さらに, より小型のチューナブルモデルをクエリオプティマイザとして利用し, より大規模な教師モデルの知識蒸留により改良した, 柔軟性の向上と計算コストの削減を図り, パイプラインのトレーニング可能なスキームを提案する。
様々な質問応答(QA)データセットと検索システムを用いて評価した結果、ERRRは既存のベースラインを一貫して上回り、RAGシステムの有用性と精度を向上させるための汎用的で費用対効果の高いモジュールであることが判明した。
関連論文リスト
- Retriever-and-Memory: Towards Adaptive Note-Enhanced Retrieval-Augmented Generation [72.70046559930555]
本稿では,複雑なQAタスクに対する適応ノート拡張RAG(Adaptive Note-Enhanced RAG)と呼ばれる汎用RAGアプローチを提案する。
具体的には、Adaptive-Noteは、知識の成長に関する包括的な視点を導入し、ノート形式で新しい情報を反復的に収集する。
さらに,適切な知識探索を促進するために,適応的な音符ベースの停止探索戦略を用いて,「何を検索し,いつ停止するか」を判断する。
論文 参考訳(メタデータ) (2024-10-11T14:03:29Z) - VERA: Validation and Enhancement for Retrieval Augmented systems [0.0]
textbfValidation and textbfEnhancement for textbfRetrieval textbfAugmented system を提案する。
VERAは、外部検索が必要なかどうかを最初にチェックし、検索したコンテキストの関連性と冗長性を評価し、非必要情報の除去のために精査する評価器-既存のLCMを使用している。
論文 参考訳(メタデータ) (2024-09-18T16:10:47Z) - GenCRF: Generative Clustering and Reformulation Framework for Enhanced Intent-Driven Information Retrieval [20.807374287510623]
我々は,多種多様な意図を適応的に捉えるための生成クラスタリング・改革フレームワークGenCRFを提案する。
我々はGenCRFが,nDCG@10で従来のクエリ修正SOTAを最大12%上回り,最先端のパフォーマンスを実現していることを示す。
論文 参考訳(メタデータ) (2024-09-17T05:59:32Z) - Improving Retrieval for RAG based Question Answering Models on Financial Documents [0.046603287532620746]
本稿では,RAGパイプラインの既存の制約について検討し,テキスト検索の方法を紹介する。
高度なチャンキングテクニック、クエリ拡張、メタデータアノテーションの組み込み、再ランク付けアルゴリズムの適用、埋め込みアルゴリズムの微調整などの戦略を練っている。
論文 参考訳(メタデータ) (2024-03-23T00:49:40Z) - Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity [59.57065228857247]
Retrieval-augmented Large Language Models (LLMs) は、質問回答(QA)のようなタスクにおける応答精度を高めるための有望なアプローチとして登場した。
本稿では,クエリの複雑さに基づいて,LLMの最適戦略を動的に選択できる適応型QAフレームワークを提案する。
オープンドメインのQAデータセットを用いて、複数のクエリの複雑さを網羅し、QAシステムの全体的な効率性と精度を高めることを示す。
論文 参考訳(メタデータ) (2024-03-21T13:52:30Z) - RAGGED: Towards Informed Design of Retrieval Augmented Generation Systems [51.171355532527365]
Retrieval-augmented Generation (RAG) は言語モデル(LM)の性能を大幅に向上させる
RAGGEDは、様々な文書ベースの質問応答タスクにわたるRAG構成を分析するためのフレームワークである。
論文 参考訳(メタデータ) (2024-03-14T02:26:31Z) - REAR: A Relevance-Aware Retrieval-Augmented Framework for Open-Domain
Question Answering [122.62012375722124]
既存の手法では,大規模言語モデル (LLM) は検索した文書の関連性を正確に評価することはできない。
Relevance-Aware Retrieval-augmented approach for open- domain question answering (QA)を提案する。
論文 参考訳(メタデータ) (2024-02-27T13:22:51Z) - EASRec: Elastic Architecture Search for Efficient Long-term Sequential
Recommender Systems [82.76483989905961]
現在のSRS(Sequential Recommender Systems)は、計算とリソースの非効率に悩まされている。
我々は、効率的な長期シーケンスレコメンダシステム(EASRec)のための弾性アーキテクチャー探索を開発する。
EASRecは、入力データバッチから履歴情報を活用するデータ認識ゲートを導入し、レコメンデーションネットワークの性能を改善する。
論文 参考訳(メタデータ) (2024-02-01T07:22:52Z) - Roq: Robust Query Optimization Based on a Risk-aware Learned Cost Model [3.0784574277021406]
本稿では,リスク認識型学習アプローチに基づくロバストなクエリ最適化を実現するための包括的フレームワークを提案する。
Roqには、クエリ最適化の文脈におけるロバストネスの概念の新たな形式化が含まれている。
我々は、Roqが最先端技術と比較して堅牢なクエリ最適化に大幅な改善をもたらすことを実験的に実証した。
論文 参考訳(メタデータ) (2024-01-26T21:16:37Z) - Information Directed Reward Learning for Reinforcement Learning [64.33774245655401]
我々は、標準rlアルゴリズムが可能な限り少数の専門家クエリで高い期待値を達成することができる報酬関数のモデルを学ぶ。
特定のタイプのクエリ用に設計された以前のアクティブな報酬学習方法とは対照的に、IDRLは自然に異なるクエリタイプに対応します。
我々は,複数の環境における広範囲な評価と,異なるタイプのクエリでこの結果を支持する。
論文 参考訳(メタデータ) (2021-02-24T18:46:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。