Scalable General Error Mitigation for Quantum Circuits
- URL: http://arxiv.org/abs/2411.07916v1
- Date: Tue, 12 Nov 2024 16:47:36 GMT
- Title: Scalable General Error Mitigation for Quantum Circuits
- Authors: Philip Döbler, Jannik Pflieger, Fengping Jin, Hans De Raedt, Kristel Michielsen, Thomas Lippert, Manpreet Singh Jattana,
- Abstract summary: In quantum computing, error mitigation is a method to improve the results of an error-prone quantum processor by post-processing them.
We improve the General Error Mitigation (GEM) method for scalability.
Experiments show that the mitigation works comparably well to GEM, while requiring a fraction of the calibration runs.
- Score: 0.3141085922386211
- License:
- Abstract: In quantum computing, error mitigation is a method to improve the results of an error-prone quantum processor by post-processing them on a classical computer. In this work, we improve the General Error Mitigation (GEM) method for scalability. GEM relies on the use of a matrix to represent the device error, which requires the execution of $2^{n+1}$ calibration circuits on the quantum hardware, where $n$ is the number of qubits. With our improved method, the number of calibration runs is independent of the number of qubits and depends only on the number of non-zero states in the output distribution. We run 1853 randomly generated circuits with widths between 2-7 qubits and depths between 10-140 gates on IBMQ superconducting devices. The experiments show that the mitigation works comparably well to GEM, while requiring a fraction of the calibration runs. Finally, an experiment to mitigate errors in a 100 qubit circuit demonstrates the scalable features of our method.
Related papers
- Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
We introduce a variational quantum solver for optimizations over $m=mathcalO(nk)$ binary variables using only $n$ qubits, with tunable $k>1$.
We analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature.
arXiv Detail & Related papers (2024-01-17T18:59:38Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Suppressing quantum errors by scaling a surface code logical qubit [147.2624260358795]
We report the measurement of logical qubit performance scaling across multiple code sizes.
Our system of superconducting qubits has sufficient performance to overcome the additional errors from increasing qubit number.
Results mark the first experimental demonstration where quantum error correction begins to improve performance with increasing qubit number.
arXiv Detail & Related papers (2022-07-13T18:00:02Z) - The Accuracy vs. Sampling Overhead Trade-off in Quantum Error Mitigation
Using Monte Carlo-Based Channel Inversion [84.66087478797475]
Quantum error mitigation (QEM) is a class of promising techniques for reducing the computational error of variational quantum algorithms.
We consider a practical channel inversion strategy based on Monte Carlo sampling, which introduces additional computational error.
We show that when the computational error is small compared to the dynamic range of the error-free results, it scales with the square root of the number of gates.
arXiv Detail & Related papers (2022-01-20T00:05:01Z) - Quantum error mitigation via matrix product operators [27.426057220671336]
Quantum error mitigation (QEM) can suppress errors in measurement results via repeated experiments and post decomposition of data.
MPO representation increases the accuracy of modeling noise without consuming more experimental resources.
Our method is hopeful of being applied to circuits in higher dimensions with more qubits and deeper depth.
arXiv Detail & Related papers (2022-01-03T16:57:43Z) - Error statistics and scalability of quantum error mitigation formulas [4.762232147934851]
We apply statistics principles to quantum error mitigation and analyse the scaling behaviour of its intrinsic error.
We find that the error increases linearly $O(epsilon N)$ with the gate number $N$ before mitigation and sub-linearly $O(epsilon' Ngamma)$ after mitigation.
The $sqrtN$ scaling is a consequence of the law of large numbers, and it indicates that error mitigation can suppress the error by a larger factor in larger circuits.
arXiv Detail & Related papers (2021-12-12T15:02:43Z) - Realizing Repeated Quantum Error Correction in a Distance-Three Surface
Code [42.394110572265376]
We demonstrate quantum error correction using the surface code, which is known for its exceptionally high tolerance to errors.
In an error correction cycle taking only $1.1,mu$s, we demonstrate the preservation of four cardinal states of the logical qubit.
arXiv Detail & Related papers (2021-12-07T13:58:44Z) - Qubit Readout Error Mitigation with Bit-flip Averaging [0.0]
We present a scheme to more efficiently mitigate qubit readout errors on quantum hardware.
Our scheme removes biases in the readout errors allowing a general error model to be built with far fewer calibration measurements.
Our approach can be combined with, and simplify, other mitigation methods allowing tractable mitigation even for large numbers of qubits.
arXiv Detail & Related papers (2021-06-10T15:08:06Z) - Exponential suppression of bit or phase flip errors with repetitive
error correction [56.362599585843085]
State-of-the-art quantum platforms typically have physical error rates near $10-3$.
Quantum error correction (QEC) promises to bridge this divide by distributing quantum logical information across many physical qubits.
We implement 1D repetition codes embedded in a 2D grid of superconducting qubits which demonstrate exponential suppression of bit or phase-flip errors.
arXiv Detail & Related papers (2021-02-11T17:11:20Z) - Measurement Error Mitigation in Quantum Computers Through Classical
Bit-Flip Correction [1.6872254218310017]
We develop a classical bit-flip correction method to mitigate measurement errors on quantum computers.
This method can be applied to any operator, any number of qubits, and any realistic bit-flip probability.
arXiv Detail & Related papers (2020-07-07T17:52:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.