Quantum Mechanics from General Relativity and the Quantum Friedmann Equation
- URL: http://arxiv.org/abs/2411.07961v1
- Date: Tue, 12 Nov 2024 17:37:32 GMT
- Title: Quantum Mechanics from General Relativity and the Quantum Friedmann Equation
- Authors: Marco Matone, Nikolaos Dimakis,
- Abstract summary: We show that the recently introduced linear form of the Friedmann equations corresponds to the first-order WKB expansion of a quantum cosmological equation.
A detailed example within the radiation-dominated context illustrates how these quantum solutions connect to Seiberg-Witten theory.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we demonstrate that the recently introduced linear form of the Friedmann equations corresponds to the first-order WKB expansion of a quantum cosmological equation, indicating that both General Relativity (GR) contains aspects of Quantum Mechanics (QM) and that GR itself is part of a more general theory. Solutions of this quantum Friedmann equation are built in terms of a quantum scale factor that encapsulates the quantum effects on a free-falling particle. The quantum-modified scale factor reshapes the dynamics of the universe, removing the singularity due to the vanishing of the scale factor. A detailed example within the radiation-dominated context illustrates how these quantum solutions connect to Seiberg-Witten theory, recently applied to black holes, and incorporate resurgence phenomena and complex metrics as developed by Kontsevich, Segal, and Witten. As a result, this reveals an invariance of time parametrization under $\Gamma(2)$ transformations of the wave function.
Related papers
- A pseudo-random and non-point Nelson-style process [49.1574468325115]
We take up the idea of Nelson's processes, the aim of which was to deduce Schr"odinger's equation.
We consider deterministic processes which are pseudo-random but which have the same characteristics as Nelson's processes.
arXiv Detail & Related papers (2025-04-29T16:18:51Z) - Semiclassical gravity phenomenology under the causal-conditional quantum measurement prescription II: Heisenberg picture and apparent optical entanglement [13.04737397490371]
In quantum gravity theory, a state-dependent gravitational potential introduces nonlinearity into the state evolution.
The formalism for understanding the continuous quantum measurement process on the quantum state has been previously discussed using the Schr"odinger picture.
In this work, an equivalent formalism using the Heisenberg picture is developed and applied to the analysis of two optomechanical experiment protocols.
arXiv Detail & Related papers (2024-11-08T14:07:18Z) - Scaled quantum theory. The bouncing ball problem [0.0]
The standard bouncing ball problem is analyzed under the presence of a gravitational field and harmonic potential.
The quantum-classical transition of the density matrix is described by the linear scaled von Neumann equation for mixed states.
arXiv Detail & Related papers (2024-10-14T10:09:48Z) - A Theory of Quantum Jumps [44.99833362998488]
We study fluorescence and the phenomenon of quantum jumps'' in idealized models of atoms coupled to the quantized electromagnetic field.
Our results amount to a derivation of the fundamental randomness in the quantum-mechanical description of microscopic systems.
arXiv Detail & Related papers (2024-04-16T11:00:46Z) - Quantum Isotropic Universe in RQM Analogy: the Cosmological Horizon [0.0]
We investigate the quantum dynamics of the isotropic Universe in the presence of a free massless scalar field.
We show how the introduction of a "turning point" in the Universe evolution allows to overcome an intrinsic ambiguity in representing the expanding and collapsing Universe.
arXiv Detail & Related papers (2024-04-10T14:45:56Z) - Quantumness and quantum to classical transition in the generalized Rabi
model [17.03191662568079]
We define the quantumness of a Hamiltonian by the free energy difference between its quantum and classical descriptions.
We show that the Jaynes-Cummings and anti Jaynes-Cummings models exhibit greater quantumness than the Rabi model.
arXiv Detail & Related papers (2023-11-12T18:24:36Z) - Intrinsic Entropy of Squeezed Quantum Fields and Nonequilibrium Quantum
Dynamics of Cosmological Perturbations [0.0]
entropy of cosmological perturbations can be studied by treating them in the framework of squeezed quantum systems.
We compute the covariance matrix elements of the parametric quantum field and solve for the evolution of the density matrix elements.
We show explicitly why the entropy for the squeezed yet closed system is zero, but is proportional to the particle number produced.
arXiv Detail & Related papers (2021-10-06T13:43:00Z) - The Time-Evolution of States in Quantum Mechanics [77.34726150561087]
It is argued that the Schr"odinger equation does not yield a correct description of the quantum-mechanical time evolution of states of isolated (open) systems featuring events.
A precise general law for the time evolution of states replacing the Schr"odinger equation is formulated within the so-called ETH-Approach to Quantum Mechanics.
arXiv Detail & Related papers (2021-01-04T16:09:10Z) - Experimental Validation of Fully Quantum Fluctuation Theorems Using
Dynamic Bayesian Networks [48.7576911714538]
Fluctuation theorems are fundamental extensions of the second law of thermodynamics for small systems.
We experimentally verify detailed and integral fully quantum fluctuation theorems for heat exchange using two quantum-correlated thermal spins-1/2 in a nuclear magnetic resonance setup.
arXiv Detail & Related papers (2020-12-11T12:55:17Z) - Projection Hypothesis from the von Neumann-type Interaction with a
Bose-Einstein Condensate [0.0]
We derive the projection hypothesis in projective quantum measurement by restricting the set of observables.
The key steps in the derivation are the return of the symmetry translation of this quantum coordinate to the inverse translation of the c-number spatial coordinate in quantum field theory.
arXiv Detail & Related papers (2020-12-03T13:05:36Z) - Quantum potential in dust collapse with a negative cosmological constant [0.0]
We obtain the wave function describing collapsing dust in an anti-de Sitter background, as seen by a co-moving observer.
We perform a causal de Broglie-Bohm analysis, and obtain the corresponding quantum potential.
An initially collapsing solution with a negative cosmological constant bounces back after reaching a minimum radius.
arXiv Detail & Related papers (2020-07-21T17:43:02Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Singularity resolution depends on the clock [0.0]
We study the quantum cosmology of a flat Friedmann-Lemaitre-Robertson-Walker universe filled with a (free) massless scalar field and a perfect fluid that represents radiation or a cosmological constant whose value is not fixed by the action, as in unimodular gravity.
arXiv Detail & Related papers (2020-05-11T18:06:59Z) - Quantum fluctuations of the compact phase space cosmology [0.0]
This article applies effective methods to extract semi-classical regime of quantum dynamics.
We find a nontrivial behavior of the fluctuations around the recollapse of the universe.
An unexpected relation between the quantum fluctuations of the cosmological sector and the holographic Bousso bound is shown.
arXiv Detail & Related papers (2020-03-18T10:08:11Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.