論文の概要: UNSCT-HRNet: Modeling Anatomical Uncertainty for Landmark Detection in Total Hip Arthroplasty
- arxiv url: http://arxiv.org/abs/2411.08488v1
- Date: Wed, 13 Nov 2024 10:13:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-14 16:10:27.937873
- Title: UNSCT-HRNet: Modeling Anatomical Uncertainty for Landmark Detection in Total Hip Arthroplasty
- Title(参考訳): UNSCT-HRNet:人工股関節全置換術におけるランドマーク検出のための解剖学的不確かさのモデル化
- Authors: Jiaxin Wan, Lin Liu, Haoran Wang, Liangwei Li, Wei Li, Shuheng Kou, Runtian Li, Jiayi Tang, Juanxiu Liu, Jing Zhang, Xiaohui Du, Ruqian Hao,
- Abstract要約: 本研究では,空間関係融合(SRF)モジュールと不確実性推定(UE)モジュールを統合するフレームワークUNSCT-HRNetを提案する。
構造化されていないデータに対して,提案手法は一定数の点に依存することなくランドマークを予測できる。
UNSCT-HRNetは、非構造化データの複数のメトリクスで60%以上の改善を実証しています。
- 参考スコア(独自算出の注目度): 21.90601597000203
- License:
- Abstract: Total hip arthroplasty (THA) relies on accurate landmark detection from radiographic images, but unstructured data caused by irregular patient postures or occluded anatomical markers pose significant challenges for existing methods. To address this, we propose UNSCT-HRNet (Unstructured CT - High-Resolution Net), a deep learning-based framework that integrates a Spatial Relationship Fusion (SRF) module and an Uncertainty Estimation (UE) module. The SRF module, utilizing coordinate convolution and polarized attention, enhances the model's ability to capture complex spatial relationships. Meanwhile, the UE module which based on entropy ensures predictions are anatomically relevant. For unstructured data, the proposed method can predict landmarks without relying on the fixed number of points, which shows higher accuracy and better robustness comparing with the existing methods. Our UNSCT-HRNet demonstrates over a 60% improvement across multiple metrics in unstructured data. The experimental results also reveal that our approach maintains good performance on the structured dataset. Overall, the proposed UNSCT-HRNet has the potential to be used as a new reliable, automated solution for THA surgical planning and postoperative monitoring.
- Abstract(参考訳): 人工股関節全置換術(THA)はX線画像からの正確なランドマーク検出に頼っているが,不規則な姿勢や閉塞した解剖学的マーカーによる非構造的データは,既存の方法に重大な課題を生じている。
そこで本研究では,UnSCT-HRNet(Unstructured CT - High-Resolution Net)を提案する。これは,SRFモジュールと不確実性推定(UE)モジュールを統合したディープラーニングベースのフレームワークである。
SRFモジュールは座標畳み込みと偏光注意を利用して、複雑な空間関係を捕捉するモデルの能力を高める。
一方、エントロピーに基づくUEモジュールは、予測が解剖学的に関連していることを保証する。
構造化されていないデータに対して,提案手法は定点数に頼ることなくランドマークを予測可能であり,既存の手法と比較して精度が高く,ロバスト性も良好である。
UNSCT-HRNetは、非構造化データの複数のメトリクスで60%以上の改善を実証しています。
実験結果から,本手法は構造化データセットにおいて良好な性能を維持していることが明らかとなった。
全体として、提案したUNSCT-HRNetは、THA手術計画と術後モニタリングのための信頼性が高く自動化された新しいソリューションとして使われる可能性がある。
関連論文リスト
- Probabilistic 3D Correspondence Prediction from Sparse Unsegmented Images [1.2179682412409507]
スパース画像データから3次元対応を予測する統一モデルであるSPI-CorrNetを提案する。
LGE MRI左房データセットとAbdomen CT-1K肝データセットを用いた実験により,スパース画像駆動SSMの精度とロバスト性の向上が示された。
論文 参考訳(メタデータ) (2024-07-02T03:56:20Z) - Bayesian Uncertainty Estimation by Hamiltonian Monte Carlo: Applications to Cardiac MRI Segmentation [3.0665936758208447]
深層学習法は多くの医用画像セグメンテーションタスクにおいて最先端の性能を達成した。
最近の研究では、ディープニューラルネットワーク(DNN)が誤解され、過信され、"サイレント障害"につながることが示されている。
医療データ増大に対応するため,Hachian Monte Carlo (HMC) を用いたベイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-04T18:47:56Z) - S3M: Scalable Statistical Shape Modeling through Unsupervised
Correspondences [91.48841778012782]
本研究では,集団解剖学における局所的および大域的形状構造を同時に学習するための教師なし手法を提案する。
我々のパイプラインは、ベースライン法と比較して、SSMの教師なし対応推定を大幅に改善する。
我々の手法は、ノイズの多いニューラルネットワーク予測から学ぶのに十分堅牢であり、より大きな患者にSSMを拡張できる可能性がある。
論文 参考訳(メタデータ) (2023-04-15T09:39:52Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - Real-time landmark detection for precise endoscopic submucosal
dissection via shape-aware relation network [51.44506007844284]
内視鏡下粘膜下郭清術における高精度かつリアルタイムなランドマーク検出のための形状認識型関係ネットワークを提案する。
まず,ランドマーク間の空間的関係に関する先行知識を直感的に表現する関係キーポイント・ヒートマップを自動生成するアルゴリズムを考案する。
次に、事前知識を学習プロセスに段階的に組み込むために、2つの補完的な正規化手法を開発する。
論文 参考訳(メタデータ) (2021-11-08T07:57:30Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Probabilistic 3D surface reconstruction from sparse MRI information [58.14653650521129]
スパース2次元MR画像データとアレータティック不確実性予測から3次元表面再構成を同時に行うための新しい確率論的深層学習手法を提案する。
本手法は,3つの準直交MR画像スライスから,限られたトレーニングセットから大きな表面メッシュを再構成することができる。
論文 参考訳(メタデータ) (2020-10-05T14:18:52Z) - Multi-structure bone segmentation in pediatric MR images with combined
regularization from shape priors and adversarial network [0.4588028371034407]
異種小児磁気共鳴(MR)画像のセグメント化に難渋する課題に対して,新たにトレーニングした正規化畳み込みエンコーダデコーダネットワークを提案する。
グローバルに一貫した予測を得るために,オートエンコーダで学習した非線形形状表現から得られる,形状先行に基づく正規化を組み込む。
提案手法は,Dice, 感度, 特異性, 最大対称表面距離, 平均対称表面距離, および相対絶対体積差の測定値について, 従来提案した手法と同等あるいは同等に動作した。
論文 参考訳(メタデータ) (2020-09-15T13:39:53Z) - Collaborative Boundary-aware Context Encoding Networks for Error Map
Prediction [65.44752447868626]
本稿では,AEP-Net と呼ばれる協調的コンテキスト符号化ネットワークを提案する。
具体的には、画像とマスクのより優れた特徴融合のための協調的な特徴変換分岐と、エラー領域の正確な局所化を提案する。
AEP-Netはエラー予測タスクの平均DSCが0.8358,0.8164であり、ピアソン相関係数が0.9873である。
論文 参考訳(メタデータ) (2020-06-25T12:42:01Z) - Multi-site fMRI Analysis Using Privacy-preserving Federated Learning and
Domain Adaptation: ABIDE Results [13.615292855384729]
高品質なディープラーニングモデルを訓練するには,大量の患者情報を集める必要がある。
患者データのプライバシを保護する必要があるため、複数の機関から中央データベースを組み立てることは困難である。
フェデレート・ラーニング(Federated Learning)は、エンティティのデータを集中化せずに、人口レベルのモデルをトレーニングすることを可能にする。
論文 参考訳(メタデータ) (2020-01-16T04:49:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。