論文の概要: Gaussian Mixture Models Based Augmentation Enhances GNN Generalization
- arxiv url: http://arxiv.org/abs/2411.08638v1
- Date: Wed, 13 Nov 2024 14:26:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-14 16:08:57.866378
- Title: Gaussian Mixture Models Based Augmentation Enhances GNN Generalization
- Title(参考訳): ガウス混合モデルに基づく拡張によるGNN一般化
- Authors: Yassine Abbahaddou, Fragkiskos D. Malliaros, Johannes F. Lutzeyer, Amine Mohamed Aboussalah, Michalis Vazirgiannis,
- Abstract要約: 本稿では,Rademacher複雑性を用いた理論的枠組みを導入し,一般化誤差を計算した。
このフレームワークは、グラフデータ拡張(GDA)アルゴリズムであるGMM-GDAの設計を通知する。
- 参考スコア(独自算出の注目度): 22.04352144324223
- License:
- Abstract: Graph Neural Networks (GNNs) have shown great promise in tasks like node and graph classification, but they often struggle to generalize, particularly to unseen or out-of-distribution (OOD) data. These challenges are exacerbated when training data is limited in size or diversity. To address these issues, we introduce a theoretical framework using Rademacher complexity to compute a regret bound on the generalization error and then characterize the effect of data augmentation. This framework informs the design of GMM-GDA, an efficient graph data augmentation (GDA) algorithm leveraging the capability of Gaussian Mixture Models (GMMs) to approximate any distribution. Our approach not only outperforms existing augmentation techniques in terms of generalization but also offers improved time complexity, making it highly suitable for real-world applications.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、ノード分類やグラフ分類といったタスクにおいて大きな可能性を示しているが、特に見当たらないデータやアウト・オブ・ディストリビューション(OOD)データに対して、一般化に苦慮することが多い。
これらの課題は、トレーニングデータがサイズや多様性に制限されている場合に悪化します。
これらの問題に対処するために、Rademacher複雑性を用いた理論的枠組みを導入し、一般化誤差に縛られた後悔を計算し、データ拡張の効果を特徴づける。
このフレームワークは、ガウス混合モデル(GMM)の機能を利用して、任意の分布を近似する効率的なグラフデータ拡張(GDA)アルゴリズムであるGMM-GDAの設計を通知する。
我々のアプローチは、一般化の観点から既存の拡張技術より優れているだけでなく、時間的複雑さも向上し、現実世界のアプリケーションに非常に適している。
関連論文リスト
- DA-MoE: Addressing Depth-Sensitivity in Graph-Level Analysis through Mixture of Experts [70.21017141742763]
グラフニューラルネットワーク(GNN)は、グラフ構造化データを処理することで人気を集めている。
既存のメソッドは通常、固定数のGNNレイヤを使用して、すべてのグラフの表現を生成する。
本稿では,GNNに2つの改良を加えたDA-MoE法を提案する。
論文 参考訳(メタデータ) (2024-11-05T11:46:27Z) - Generalization of Graph Neural Networks is Robust to Model Mismatch [84.01980526069075]
グラフニューラルネットワーク(GNN)は、その一般化能力によってサポートされている様々なタスクにおいて、その効果を実証している。
本稿では,多様体モデルから生成される幾何グラフで動作するGNNについて検討する。
本稿では,そのようなモデルミスマッチの存在下でのGNN一般化の堅牢性を明らかにする。
論文 参考訳(メタデータ) (2024-08-25T16:00:44Z) - Graph Classification via Reference Distribution Learning: Theory and Practice [24.74871206083017]
グラフ参照分布学習(GRDL, Graph Reference Distribution Learning)は, グラフの効率的な分類法である。
GRDLはGNN層によって与えられるグラフの潜在ノード埋め込みを離散分布として扱い、グローバルプールなしで直接分類できる。
中規模および大規模グラフデータセットの実験は、GRDLが最先端よりも優れていることを示している。
論文 参考訳(メタデータ) (2024-08-21T06:42:22Z) - Learning to Reweight for Graph Neural Network [63.978102332612906]
グラフニューラルネットワーク(GNN)は、グラフタスクに対して有望な結果を示す。
既存のGNNの一般化能力は、テストとトレーニンググラフデータの間に分散シフトが存在する場合に低下する。
本稿では,分布外一般化能力を大幅に向上させる非線形グラフデコリレーション法を提案する。
論文 参考訳(メタデータ) (2023-12-19T12:25:10Z) - G-Mix: A Generalized Mixup Learning Framework Towards Flat Minima [17.473268736086137]
我々は、DNNモデルのトレーニングにMixupとSAMの強みを組み合わせた、Generalized-Mixupと呼ばれる新しい学習フレームワークを提案する。
本稿では2つの新しいアルゴリズムを提案する: バイナリG-Mixと分解G-Mixは、各サンプルのシャープネス感度に基づいてトレーニングデータを2つのサブセットに分割する。
理論的説明と実験結果の両方により、提案したBG-MixアルゴリズムとDG-Mixアルゴリズムは、複数のデータセットやモデルにわたるモデルの一般化をさらに強化することが明らかとなった。
論文 参考訳(メタデータ) (2023-08-07T01:25:10Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - Graph Neural Network-Inspired Kernels for Gaussian Processes in
Semi-Supervised Learning [4.644263115284322]
グラフニューラルネットワーク(GNN)は、半教師付き学習において、グラフ構造化データのモデルとして期待できるクラスとして最近登場した。
この帰納バイアスをGPに導入して,グラフ構造化データの予測性能を向上させる。
これらのグラフベースのカーネルは、各GNNと比較して、競合する分類と回帰性能、および時間の長所をもたらすことを示す。
論文 参考訳(メタデータ) (2023-02-12T01:07:56Z) - Towards Better Generalization with Flexible Representation of
Multi-Module Graph Neural Networks [0.27195102129094995]
ランダムグラフ生成器を用いて,グラフサイズと構造特性がGNNの予測性能に与える影響について検討する。
本稿では,GNNが未知のグラフに一般化できるかどうかを決定する上で,平均ノード次数が重要な特徴であることを示す。
集約された入力に対して単一の正準非線形変換を一般化することにより、ネットワークが新しいグラフに柔軟に対応可能なマルチモジュールGNNフレームワークを提案する。
論文 参考訳(メタデータ) (2022-09-14T12:13:59Z) - Learning to Drop: Robust Graph Neural Network via Topological Denoising [50.81722989898142]
グラフニューラルネットワーク(GNN)のロバスト性および一般化性能を向上させるために,パラメータ化トポロジカルデノイングネットワークであるPTDNetを提案する。
PTDNetは、パラメータ化されたネットワークでスパーシファイドグラフ内のエッジ数をペナル化することで、タスク非関連エッジを創出する。
PTDNetはGNNの性能を著しく向上させ,さらにノイズの多いデータセットでは性能が向上することを示す。
論文 参考訳(メタデータ) (2020-11-13T18:53:21Z) - Robust Optimization as Data Augmentation for Large-scale Graphs [117.2376815614148]
学習中に勾配に基づく逆方向摂動を伴うノード特徴を反復的に拡張するFLAG(Free Large-scale Adversarial Augmentation on Graphs)を提案する。
FLAGはグラフデータに対する汎用的なアプローチであり、ノード分類、リンク予測、グラフ分類タスクで普遍的に機能する。
論文 参考訳(メタデータ) (2020-10-19T21:51:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。