論文の概要: LUDO: Low-Latency Understanding of Deformable Objects using Point Cloud Occupancy Functions
- arxiv url: http://arxiv.org/abs/2411.08777v4
- Date: Thu, 08 May 2025 07:18:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-09 15:15:32.232038
- Title: LUDO: Low-Latency Understanding of Deformable Objects using Point Cloud Occupancy Functions
- Title(参考訳): LUDO: Point Cloud Occupancy関数を用いた変形可能なオブジェクトの低レイテンシ理解
- Authors: Pit Henrich, Franziska Mathis-Ullrich, Paul Maria Scheikl,
- Abstract要約: 本稿では,変形可能な物体の高精度な低レイテンシ理解手法LUDOを紹介する。
LUDOは、内部構造を含む変形した状態の物体を、30ms以下の単一視点の雲観測から再構成する。
変形可能な物体に注目する内部領域を自律的ターゲティングするLUDOの能力を実証する。
- 参考スコア(独自算出の注目度): 2.691955421780392
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurately determining the shape of objects and the location of their internal structures within deformable objects is crucial for medical tasks that require precise targeting, such as robotic biopsies. We introduce LUDO, a method for accurate low-latency understanding of deformable objects. LUDO reconstructs objects in their deformed state, including their internal structures, from a single-view point cloud observation in under 30 ms using occupancy networks. LUDO provides uncertainty estimates for its predictions. Additionally, it provides explainability by highlighting key features in its input observations. Both uncertainty and explainability are important for safety-critical applications such as surgical interventions. We demonstrate LUDO's abilities for autonomous targeting of internal regions of interest (ROIs) in deformable objects. We evaluate LUDO in real-world robotic experiments, achieving a success rate of 98.9% for puncturing various ROIs inside deformable objects. LUDO demonstrates the potential to interact with deformable objects without the need for deformable registration methods.
- Abstract(参考訳): 変形可能な物体内の物体の形状と内部構造の位置を正確に決定することは、ロボットの生検のような正確な標的を必要とする医療作業に不可欠である。
本稿では,変形可能な物体の高精度な低レイテンシ理解手法LUDOを紹介する。
LUDOは、その内部構造を含む変形状態の物体を、占有ネットワークを用いて、30ミリ秒未満で1視点の雲観測から再構成する。
LUDOはその予測に対して不確実な見積もりを提供する。
さらに、入力観察における重要な特徴を強調することで、説明可能性を提供する。
不確実性と説明可能性の両方は、外科的介入のような安全上重要な応用に重要である。
変形可能な物体の内部領域(ROI)の自律的ターゲティング能力を示す。
実世界のロボット実験においてLUDOを評価し, 変形可能な物体内部の様々なROIを句読する成功率98.9%を達成した。
LUDOは、変形可能な登録方法を必要とせずに、変形可能なオブジェクトと相互作用する可能性を実証している。
関連論文リスト
- Are We Done with Object-Centric Learning? [65.67948794110212]
オブジェクト中心学習(OCL)は、シーン内の他のオブジェクトやバックグラウンドキューから分離されたオブジェクトのみをエンコードする表現を学習しようとする。
最近のサンプル効率のセグメンテーションモデルでは、ピクセル空間内のオブジェクトを分離し、それらを独立に符号化することができる。
我々は,OCLのレンズを通した背景刺激によるOOD一般化の課題に対処する。
論文 参考訳(メタデータ) (2025-04-09T17:59:05Z) - Beyond Semantics: Rediscovering Spatial Awareness in Vision-Language Models [10.792834356227118]
VLM(Vision-Language Models)は、オブジェクトの識別と記述が優れているが、空間的推論に苦慮している。
人間の視覚のデュアルパスウェイモデルに触発されて,強い物体認識能力にもかかわらず,VLMが空間的タスクに失敗する理由を考察した。
論文 参考訳(メタデータ) (2025-03-21T17:51:14Z) - Can Large Language Models Help Experimental Design for Causal Discovery? [94.66802142727883]
Large Language Model Guided Intervention Targeting (LeGIT) は、LLMを効果的に組み込んだ堅牢なフレームワークであり、因果発見のための介入のための既存の数値的アプローチを強化する。
LeGITは、既存の方法よりも大幅な改善と堅牢性を示し、人間を超越している。
論文 参考訳(メタデータ) (2025-03-03T03:43:05Z) - Seeing with Partial Certainty: Conformal Prediction for Robotic Scene Recognition in Built Environments [6.295098866364597]
本稿では,VLMを用いた位置認識における不確実性の測定・調整を目的としたフレームワークであるSeing with partial Certainty(SwPC)を紹介する。
SwPCは、人間の助けを求めるリクエストを最小限に抑えつつ、位置認識に関する統計的保証を提供するために、共形予測の理論に基づいて構築されている。
論文 参考訳(メタデータ) (2025-01-09T03:50:00Z) - Representing Positional Information in Generative World Models for Object Manipulation [12.263162194821787]
本稿では,世界モデルに基づくエージェントがオブジェクト配置タスクを解くための汎用的アプローチを提案する。
特にLCPでは、目標仕様のためのオブジェクトの位置情報を明示的にキャプチャするオブジェクト中心の潜在表現を採用している。
提案手法は複数の操作環境にまたがって厳密に評価され,現行のモデルベース制御手法と比較して良好な性能を示した。
論文 参考訳(メタデータ) (2024-09-18T14:19:50Z) - Small Object Detection for Indoor Assistance to the Blind using YOLO NAS Small and Super Gradients [0.0]
本稿では,小物体検出の課題に対処して,視覚障害者に対する屋内支援のための新しいアプローチを提案する。
軽量で効率的なオブジェクト検出モデルであるYOLO NAS Smallアーキテクチャを,Super Gradientsトレーニングフレームワークを用いて最適化する手法を提案する。
論文 参考訳(メタデータ) (2024-08-28T05:38:20Z) - Stimulating Imagination: Towards General-purpose Object Rearrangement [2.0885207827639785]
汎用オブジェクト配置は、インテリジェントロボットの基本的な能力である。
我々はこの課題を達成するためにSPORTというフレームワークを提案する。
Sportは、物理的に現実的な結果を保証するために拡散に基づく3Dポーズ推定器を学習する。
シミュレーションと実世界の実験により、汎用オブジェクト再構成を実現するためのアプローチの可能性を示す。
論文 参考訳(メタデータ) (2024-08-03T03:53:05Z) - Uncertainty modeling for fine-tuned implicit functions [10.902709236602536]
入射関数は、スパースビューから詳細な物体形状を再構成するコンピュータビジョンにおいて重要な役割を担っている。
暗黙関数における不確実性推定手法であるDropsemblesを導入する。
その結果,Dropsemblesは深層アンサンブルの精度とキャリブレーションレベルを達成するが,計算コストは著しく低いことがわかった。
論文 参考訳(メタデータ) (2024-06-17T20:46:18Z) - Learning Object-Centric Representation via Reverse Hierarchy Guidance [73.05170419085796]
OCL(Object-Centric Learning)は、ニューラルネットワークが視覚的なシーンで個々のオブジェクトを識別できるようにする。
RHGNetは、トレーニングと推論プロセスにおいて、さまざまな方法で機能するトップダウンパスを導入している。
我々のモデルは、よく使われる複数のデータセット上でSOTA性能を達成する。
論文 参考訳(メタデータ) (2024-05-17T07:48:27Z) - Uncertainty-aware Active Learning of NeRF-based Object Models for Robot Manipulators using Visual and Re-orientation Actions [8.059133373836913]
本稿では,ロボットが対象物の完全な3次元モデルを高速に学習し,不慣れな方向で操作できるアプローチを提案する。
我々は、部分的に構築されたNeRFモデルのアンサンブルを用いて、モデルの不確実性を定量化し、次の動作を決定する。
提案手法は, 部分的NeRFモデルにより対象物をいつ, どのように把握し, 再指向するかを判断し, 相互作用中に導入された不整合を補正するために, 対象のポーズを再推定する。
論文 参考訳(メタデータ) (2024-04-02T10:15:06Z) - Open-Vocabulary Object Detectors: Robustness Challenges under Distribution Shifts [6.486569431242123]
VLM(Vision-Language Models)は近年,画期的な成果を上げている。
VLMオブジェクト検出におけるOODロバスト性の調査は、これらのモデルの信頼性を高めるために不可欠である。
本研究では,最近のOV基盤オブジェクト検出モデルのゼロショット機能について,包括的ロバスト性評価を行った。
論文 参考訳(メタデータ) (2024-04-01T14:18:15Z) - Object Detectors in the Open Environment: Challenges, Solutions, and Outlook [95.3317059617271]
オープン環境のダイナミックで複雑な性質は、オブジェクト検出器に新しくて恐ろしい挑戦をもたらす。
本稿では,オープン環境におけるオブジェクト検出器の総合的なレビューと解析を行う。
データ/ターゲットの変化の次元に基づいて、4つの四分法(ドメイン外、カテゴリ外、堅牢な学習、漸進的な学習)を含むフレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-24T19:32:39Z) - A Contextual Bandit Approach for Learning to Plan in Environments with
Probabilistic Goal Configurations [20.15854546504947]
本研究では,静的なオブジェクトだけでなく可動なオブジェクトに対しても,屋内環境を効率的に探索できるオブジェクトナビのためのモジュラーフレームワークを提案する。
我々は,不確実性に直面した場合の楽観性を示すことにより,環境を効率的に探索する。
提案アルゴリズムを2つのシミュレーション環境と実世界の環境で評価し,高いサンプル効率と信頼性を示す。
論文 参考訳(メタデータ) (2022-11-29T15:48:54Z) - H-SAUR: Hypothesize, Simulate, Act, Update, and Repeat for Understanding
Object Articulations from Interactions [62.510951695174604]
The Hypothesize, Simulate, Act, Update, and Repeat (H-SAUR) is a probabilistic generative framework that generated hypotheses about objects articulate given input observed。
提案手法は,現在最先端のオブジェクト操作フレームワークよりも優れていることを示す。
我々は、学習に基づく視覚モデルから学習前の学習を統合することにより、H-SAURのテスト時間効率をさらに向上する。
論文 参考訳(メタデータ) (2022-10-22T18:39:33Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
ドメイン適応によるオブジェクトの無傷な特徴を関連付ける新しい3D検出フレームワークを提案する。
我々は,KITTIの3D検出ベンチマークにおいて,精度と速度の両面で最新の性能を実現する。
論文 参考訳(メタデータ) (2022-08-24T16:54:38Z) - Object Manipulation via Visual Target Localization [64.05939029132394]
オブジェクトを操作するための訓練エージェントは、多くの課題を提起します。
本研究では,対象物体を探索する環境を探索し,位置が特定されると3次元座標を計算し,対象物が見えない場合でも3次元位置を推定する手法を提案する。
評価の結果,同じ感覚スイートにアクセス可能なモデルに比べて,成功率が3倍に向上したことが示された。
論文 参考訳(メタデータ) (2022-03-15T17:59:01Z) - Information-Theoretic Odometry Learning [83.36195426897768]
生体計測推定を目的とした学習動機付け手法のための統合情報理論フレームワークを提案する。
提案フレームワークは情報理論言語の性能評価と理解のためのエレガントなツールを提供する。
論文 参考訳(メタデータ) (2022-03-11T02:37:35Z) - Assessing the Reliability of Deep Learning Classifiers Through
Robustness Evaluation and Operational Profiles [13.31639740011618]
本稿では,Deep Learning (DL)分類器のモデルに依存しない信頼性評価手法を提案する。
入力空間を小さなセルに分割し、与えられたアプリケーションの運用プロファイル(OP)に従って、その堅牢性を(基礎的な真実に)"組み立てる。
信頼度は、入力(pmi)毎の誤分類の確率で推定され、信頼度とともに導出できる。
論文 参考訳(メタデータ) (2021-06-02T16:10:46Z) - Progressive Self-Guided Loss for Salient Object Detection [102.35488902433896]
画像中の深層学習に基づくサラエント物体検出を容易にするプログレッシブ自己誘導損失関数を提案する。
我々のフレームワークは適応的に集約されたマルチスケール機能を利用して、健全な物体の探索と検出を効果的に行う。
論文 参考訳(メタデータ) (2021-01-07T07:33:38Z) - Estimating Structural Target Functions using Machine Learning and
Influence Functions [103.47897241856603]
統計モデルから特定可能な関数として生じる対象関数の統計的機械学習のための新しい枠組みを提案する。
このフレームワークは問題とモデルに依存しないものであり、応用統計学における幅広い対象パラメータを推定するのに使用できる。
我々は、部分的に観測されていない情報を持つランダム/二重ロバストな問題において、いわゆる粗大化に特に焦点をあてた。
論文 参考訳(メタデータ) (2020-08-14T16:48:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。