Deep Learning Accelerated Quantum Transport Simulations in Nanoelectronics: From Break Junctions to Field-Effect Transistors
- URL: http://arxiv.org/abs/2411.08800v1
- Date: Wed, 13 Nov 2024 17:27:32 GMT
- Title: Deep Learning Accelerated Quantum Transport Simulations in Nanoelectronics: From Break Junctions to Field-Effect Transistors
- Authors: Jijie Zou, Zhanghao Zhouyin, Dongying Lin, Linfeng Zhang, Shimin Hou, Qiangqiang Gu,
- Abstract summary: We present a general framework that combines the deep learning tight-binding Hamiltonian (DeePTB) approach with the non-equilibrium Green's Function (NEGF) method.
We demonstrate the capabilities of the DeePTB-NEGF framework through two representative applications.
- Score: 7.747597014044332
- License:
- Abstract: Quantum transport calculations are essential for understanding and designing nanoelectronic devices, yet the trade-off between accuracy and computational efficiency has long limited their practical applications. We present a general framework that combines the deep learning tight-binding Hamiltonian (DeePTB) approach with the non-equilibrium Green's Function (NEGF) method, enabling efficient quantum transport calculations while maintaining first-principles accuracy. We demonstrate the capabilities of the DeePTB-NEGF framework through two representative applications: comprehensive simulation of break junction systems, where conductance histograms show good agreement with experimental measurements in both metallic contact and single-molecule junction cases; and simulation of carbon nanotube field effect transistors through self-consistent NEGF-Poisson calculations, capturing essential physics including the electrostatic potential and transfer characteristic curves under finite bias conditions. This framework bridges the gap between first-principles accuracy and computational efficiency, providing a powerful tool for high-throughput quantum transport simulations across different scales in nanoelectronics.
Related papers
- Electronic Correlations in Multielectron Silicon Quantum Dots [0.3793387630509845]
Silicon metal-oxide-semiconductor based quantum dots present a promising pathway for realizing practical quantum computers.
Hartree-Fock theory is an imperative tool for the electronic structure modelling of multi-electron quantum dots.
We present a Hartree-Fock-based method that accounts for these complexities for the modelling of silicon quantum dots.
arXiv Detail & Related papers (2024-07-05T06:46:38Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Quantum-centric strong and dynamical electron correlation: A resource-efficient second-order $N$-electron valence perturbation theory formulation for near-term quantum devices [0.0]
We present a measurement-cost efficient implementation of Strongly-Contracted $N$-Electron Valence Perturbation Theory (SC-NEVPT2) for use on near-term quantum devices.
arXiv Detail & Related papers (2024-05-24T10:37:31Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
We present a self consistent field approach (SCF) within the Adaptive Derivative-Assembled Problem-Assembled Ansatz Variational Eigensolver (ADAPTVQE)
This framework is used for efficient quantum simulations of chemical systems on nearterm quantum computers.
arXiv Detail & Related papers (2022-12-21T23:15:17Z) - Quantum transport in interacting nanodevices: from quantum dots to
single-molecule transistors [0.0]
In quantum dot devices, enhanced conductance below a characteristic energy scale is the signature of Kondo singlet formation.
We analytically derive alternative and improved quantum transport formulations.
New formulations show higher accuracy and computational efficiency.
arXiv Detail & Related papers (2022-12-19T15:25:16Z) - A pathway to accurate potential energy curves on NISQ devices [0.483420384410068]
We present a practical workflow to compute the potential energy curve of a hydrogen molecule on quantum devices.
The proposed approach uses an extrapolation scheme to deliver, with only few qubits, full configuration interaction results close to the basis-set limit.
We show that despite the limitations imposed by the noisy nature of simulated quantum hardware, it is possible to recover realistic electronic correlation values.
arXiv Detail & Related papers (2022-09-19T11:32:43Z) - A scalable superconducting quantum simulator with long-range
connectivity based on a photonic bandgap metamaterial [0.0]
We present a quantum simulator architecture based on a linear array of qubits locally connected to a superconducting photonic-bandgap metamaterial.
The metamaterial acts both as a quantum bus mediating qubit-qubit interactions, and as a readout channel for multiplexed qubit-state measurement.
We characterize the Hamiltonian of the system using a measurement-efficient protocol based on quantum many-body chaos.
arXiv Detail & Related papers (2022-06-26T06:51:54Z) - Nuclear two point correlation functions on a quantum-computer [105.89228861548395]
We use current quantum hardware and error mitigation protocols to calculate response functions for a highly simplified nuclear model.
In this work we use current quantum hardware and error mitigation protocols to calculate response functions for a modified Fermi-Hubbard model in two dimensions with three distinguishable nucleons on four lattice sites.
arXiv Detail & Related papers (2021-11-04T16:25:33Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
We develop an approach to characterize the dynamics of a quantum device and learn device parameters.
This approach outperforms physics-agnostic recurrent neural networks trained on numerically generated and experimental data.
This demonstration shows how leveraging domain knowledge improves the accuracy and efficiency of this characterization task.
arXiv Detail & Related papers (2021-06-24T15:58:57Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
We present a novel hybrid-classical algorithm that computes a molecule's all-electron energy and properties on the classical computer.
We demonstrate the ability of the quantum-classical hybrid algorithms to achieve chemically relevant results and accuracy on currently available quantum computers.
arXiv Detail & Related papers (2021-06-22T18:00:00Z) - Entanglement generation via power-of-SWAP operations between dynamic
electron-spin qubits [62.997667081978825]
Surface acoustic waves (SAWs) can create moving quantum dots in piezoelectric materials.
We show how electron-spin qubits located on dynamic quantum dots can be entangled.
arXiv Detail & Related papers (2020-01-15T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.