Demand-Aware Beam Hopping and Power Allocation for Load Balancing in Digital Twin empowered LEO Satellite Networks
- URL: http://arxiv.org/abs/2411.08896v1
- Date: Tue, 29 Oct 2024 01:32:11 GMT
- Title: Demand-Aware Beam Hopping and Power Allocation for Load Balancing in Digital Twin empowered LEO Satellite Networks
- Authors: Ruili Zhao, Jun Cai, Jiangtao Luo, Junpeng Gao, Yongyi Ran,
- Abstract summary: Low-Earth orbit (LEO) satellites utilizing beam hopping (BH) technology offer extensive coverage, low latency, high bandwidth, and significant flexibility.
Traditional beam hopping (BH) methods fail to address issues such as satellite interference, overlapping coverage, and mobility.
This paper explores a Digital Twin (DT)-based collaborative resource allocation network for multiple LEO satellites with overlapping coverage areas.
- Score: 6.8053434130447625
- License:
- Abstract: Low-Earth orbit (LEO) satellites utilizing beam hopping (BH) technology offer extensive coverage, low latency, high bandwidth, and significant flexibility. However, the uneven geographical distribution and temporal variability of ground traffic demands, combined with the high mobility of LEO satellites, present significant challenges for efficient beam resource utilization. Traditional BH methods based on GEO satellites fail to address issues such as satellite interference, overlapping coverage, and mobility. This paper explores a Digital Twin (DT)-based collaborative resource allocation network for multiple LEO satellites with overlapping coverage areas. A two-tier optimization problem, focusing on load balancing and cell service fairness, is proposed to maximize throughput and minimize inter-cell service delay. The DT layer optimizes the allocation of overlapping coverage cells by designing BH patterns for each satellite, while the LEO layer optimizes power allocation for each selected service cell. At the DT layer, an Actor-Critic network is deployed on each agent, with a global critic network in the cloud center. The A3C algorithm is employed to optimize the DT layer. Concurrently, the LEO layer optimization is performed using a Multi-Agent Reinforcement Learning algorithm, where each beam functions as an independent agent. The simulation results show that this method reduces satellite load disparity by about 72.5% and decreases the average delay to 12ms. Additionally, our approach outperforms other benchmarks in terms of throughput, ensuring a better alignment between offered and requested data.
Related papers
- Latency Optimization in LEO Satellite Communications with Hybrid Beam Pattern and Interference Control [20.19239663262141]
Low Earth orbit (LEO) satellite communication systems offer high-capacity, low-latency services crucial for next-generation applications.
The dense configuration of LEO constellations poses challenges in resource allocation optimization and interference management.
This paper proposes a novel framework for optimizing the beam scheduling and resource allocation in multi-beam LEO systems.
arXiv Detail & Related papers (2024-11-14T17:18:24Z) - SatFed: A Resource-Efficient LEO Satellite-Assisted Heterogeneous Federated Learning Framework [19.59862482196897]
We propose SatFed, a resource-efficient satellite-assisted heterogeneous FL framework.
SatFed implements freshness-based model prioritization queues to optimize the use of highly constrained satellite-ground bandwidth.
Experiments with real-world LEO satellite networks demonstrate that SatFed achieves superior performance and robustness compared to state-of-the-art benchmarks.
arXiv Detail & Related papers (2024-09-20T13:44:00Z) - A Distance Similarity-based Genetic Optimization Algorithm for Satellite Ground Network Planning Considering Feeding Mode [53.71516191515285]
The low transmission efficiency of the satellite data relay back mission has become a problem that is currently constraining the construction of the system.
We propose a distance similarity-based genetic optimization algorithm (DSGA), which considers the state characteristics between the tasks and introduces a weighted Euclidean distance method to determine the similarity between the tasks.
arXiv Detail & Related papers (2024-08-29T06:57:45Z) - Quantum Annealing-Based Algorithm for Efficient Coalition Formation Among LEO Satellites [4.737806718785056]
As the number of satellites increases, the number of communication links to maintain also rises.
This paper formulates the clustering of LEO satellites as a coalition structure generation (CSG) problem.
We obtain the optimal partitions using a hybrid quantum-classical algorithm called GCS-Q.
Our experiments, conducted using the D-Wave Advantage annealer and the state-of-the-art solver Gurobi, demonstrate that the quantum annealer significantly outperforms classical methods in terms of runtime.
arXiv Detail & Related papers (2024-08-12T08:53:46Z) - Collaborative Ground-Space Communications via Evolutionary Multi-objective Deep Reinforcement Learning [113.48727062141764]
We propose a distributed collaborative beamforming (DCB)-based uplink communication paradigm for enabling ground-space direct communications.
DCB treats the terminals that are unable to establish efficient direct connections with the low Earth orbit (LEO) satellites as distributed antennas.
We propose an evolutionary multi-objective deep reinforcement learning algorithm to obtain the desirable policies.
arXiv Detail & Related papers (2024-04-11T03:13:02Z) - Satellite Federated Edge Learning: Architecture Design and Convergence Analysis [47.057886812985984]
This paper introduces a novel FEEL algorithm, named FEDMEGA, tailored to mega-constellation networks.
By integrating inter-satellite links (ISL) for intra-orbit model aggregation, the proposed algorithm significantly reduces the usage of low data rate and intermittent GSL.
Our proposed method includes a ring all-reduce based intra-orbit aggregation mechanism, coupled with a network flow-based transmission scheme for global model aggregation.
arXiv Detail & Related papers (2024-04-02T11:59:58Z) - Deep Learning Aided Routing for Space-Air-Ground Integrated Networks
Relying on Real Satellite, Flight, and Shipping Data [79.96177511319713]
Current maritime communications mainly rely on satellites having meager transmission resources, hence suffering from poorer performance than modern terrestrial wireless networks.
With the growth of transcontinental air traffic, the promising concept of aeronautical ad hoc networking relying on commercial passenger airplanes is potentially capable of enhancing satellite-based maritime communications via air-to-ground and multi-hop air-to-air links.
We propose space-air-ground integrated networks (SAGINs) for supporting ubiquitous maritime communications, where the low-earth-orbit satellite constellations, passenger airplanes, terrestrial base stations, ships, respectively, serve as the space-, air-,
arXiv Detail & Related papers (2021-10-28T14:12:10Z) - Distributed Multi-agent Meta Learning for Trajectory Design in Wireless
Drone Networks [151.27147513363502]
This paper studies the problem of the trajectory design for a group of energyconstrained drones operating in dynamic wireless network environments.
A value based reinforcement learning (VDRL) solution and a metatraining mechanism is proposed.
arXiv Detail & Related papers (2020-12-06T01:30:12Z) - Integrating LEO Satellite and UAV Relaying via Reinforcement Learning
for Non-Terrestrial Networks [51.05735925326235]
A mega-constellation of low-earth orbit (LEO) satellites has the potential to enable long-range communication with low latency.
We study the problem of forwarding packets between two faraway ground terminals, through an LEO satellite selected from an orbiting constellation.
To maximize the end-to-end data rate, the satellite association and HAP location should be optimized.
We tackle this problem using deep reinforcement learning (DRL) with a novel action dimension reduction technique.
arXiv Detail & Related papers (2020-05-26T05:39:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.