SatFed: A Resource-Efficient LEO Satellite-Assisted Heterogeneous Federated Learning Framework
- URL: http://arxiv.org/abs/2409.13503v3
- Date: Thu, 21 Nov 2024 06:56:49 GMT
- Title: SatFed: A Resource-Efficient LEO Satellite-Assisted Heterogeneous Federated Learning Framework
- Authors: Yuxin Zhang, Zheng Lin, Zhe Chen, Zihan Fang, Wenjun Zhu, Xianhao Chen, Jin Zhao, Yue Gao,
- Abstract summary: We propose SatFed, a resource-efficient satellite-assisted heterogeneous FL framework.
SatFed implements freshness-based model prioritization queues to optimize the use of highly constrained satellite-ground bandwidth.
Experiments with real-world LEO satellite networks demonstrate that SatFed achieves superior performance and robustness compared to state-of-the-art benchmarks.
- Score: 19.59862482196897
- License:
- Abstract: Traditional federated learning (FL) frameworks rely heavily on terrestrial networks, where coverage limitations and increasing bandwidth congestion significantly hinder model convergence. Fortunately, the advancement of low-Earth orbit (LEO) satellite networks offers promising new communication avenues to augment traditional terrestrial FL. Despite this potential, the limited satellite-ground communication bandwidth and the heterogeneous operating environments of ground devices-including variations in data, bandwidth, and computing power-pose substantial challenges for effective and robust satellite-assisted FL. To address these challenges, we propose SatFed, a resource-efficient satellite-assisted heterogeneous FL framework. SatFed implements freshness-based model prioritization queues to optimize the use of highly constrained satellite-ground bandwidth, ensuring the transmission of the most critical models. Additionally, a multigraph is constructed to capture real-time heterogeneous relationships between devices, including data distribution, terrestrial bandwidth, and computing capability. This multigraph enables SatFed to aggregate satellite-transmitted models into peer guidance, enhancing local training in heterogeneous environments. Extensive experiments with real-world LEO satellite networks demonstrate that SatFed achieves superior performance and robustness compared to state-of-the-art benchmarks.
Related papers
- A Distance Similarity-based Genetic Optimization Algorithm for Satellite Ground Network Planning Considering Feeding Mode [53.71516191515285]
The low transmission efficiency of the satellite data relay back mission has become a problem that is currently constraining the construction of the system.
We propose a distance similarity-based genetic optimization algorithm (DSGA), which considers the state characteristics between the tasks and introduces a weighted Euclidean distance method to determine the similarity between the tasks.
arXiv Detail & Related papers (2024-08-29T06:57:45Z) - Hierarchical Learning and Computing over Space-Ground Integrated Networks [40.19542938629252]
We propose a hierarchical learning and computing framework to provide global aggregation services for locally trained models on ground IoT devices.
We formulate a network energy problem for model aggregation, which turns out to be a Directed Steiner Tree (DST) problem.
We propose a topologyaware energy-efficient routing (TAEER) algorithm to solve the DST problem by finding a minimum spanning arborescence on a substitute directed graph.
arXiv Detail & Related papers (2024-08-26T09:05:43Z) - Satellite Federated Edge Learning: Architecture Design and Convergence Analysis [47.057886812985984]
This paper introduces a novel FEEL algorithm, named FEDMEGA, tailored to mega-constellation networks.
By integrating inter-satellite links (ISL) for intra-orbit model aggregation, the proposed algorithm significantly reduces the usage of low data rate and intermittent GSL.
Our proposed method includes a ring all-reduce based intra-orbit aggregation mechanism, coupled with a network flow-based transmission scheme for global model aggregation.
arXiv Detail & Related papers (2024-04-02T11:59:58Z) - Cooperative Federated Learning over Ground-to-Satellite Integrated
Networks: Joint Local Computation and Data Offloading [33.44828515877944]
We propose a ground-to-satellite cooperative federated learning (FL) methodology to facilitate machine learning service management over remote regions.
Our methodology orchestrates satellite constellations to provide the following key functions during FL.
We show that our methodology can significantly speed up the convergence of FL compared with terrestrial-only and other satellite baseline approaches.
arXiv Detail & Related papers (2023-12-23T22:09:31Z) - FedSN: A Federated Learning Framework over Heterogeneous LEO Satellite Networks [18.213174641216884]
A large number of Low Earth Orbit (LEO) satellites have been launched and deployed successfully in space by commercial companies, such as SpaceX.
Due to multimodal sensors equipped by the LEO satellites, they serve not only for communication but also for various machine learning applications, such as space modulation recognition, remote sensing image classification, etc.
We propose FedSN as a general FL framework to tackle the above challenges, and fully explore data diversity on LEO satellites.
arXiv Detail & Related papers (2023-11-02T14:47:06Z) - Federated learning for LEO constellations via inter-HAP links [0.0]
Low Earth Obit (LEO) satellite constellations have seen a sharp increase of deployment in recent years.
To apply machine learning (ML) in such applications, the traditional way of downloading satellite data such as imagery to a ground station (GS) is not desirable.
We show that existing FL solutions do not fit well in such LEO constellation scenarios because of significant challenges such as excessive convergence delay and unreliable wireless channels.
arXiv Detail & Related papers (2022-05-15T08:22:52Z) - Learning Emergent Random Access Protocol for LEO Satellite Networks [51.575090080749554]
We propose a novel grant-free random access solution for LEO SAT networks, dubbed emergent random access channel protocol (eRACH)
eRACH is a model-free approach that emerges through interaction with the non-stationary network environment.
Compared to RACH, we show from various simulations that our proposed eRACH yields 54.6% higher average network throughput.
arXiv Detail & Related papers (2021-12-03T07:44:45Z) - Deep Learning Aided Routing for Space-Air-Ground Integrated Networks
Relying on Real Satellite, Flight, and Shipping Data [79.96177511319713]
Current maritime communications mainly rely on satellites having meager transmission resources, hence suffering from poorer performance than modern terrestrial wireless networks.
With the growth of transcontinental air traffic, the promising concept of aeronautical ad hoc networking relying on commercial passenger airplanes is potentially capable of enhancing satellite-based maritime communications via air-to-ground and multi-hop air-to-air links.
We propose space-air-ground integrated networks (SAGINs) for supporting ubiquitous maritime communications, where the low-earth-orbit satellite constellations, passenger airplanes, terrestrial base stations, ships, respectively, serve as the space-, air-,
arXiv Detail & Related papers (2021-10-28T14:12:10Z) - Integrating LEO Satellites and Multi-UAV Reinforcement Learning for
Hybrid FSO/RF Non-Terrestrial Networks [55.776497048509185]
A mega-constellation of low-altitude earth orbit satellites (SATs) and burgeoning unmanned aerial vehicles (UAVs) are promising enablers for high-speed and long-distance communications in beyond fifth-generation (5G) systems.
We investigate the problem of forwarding packets between two faraway ground terminals through SAT and UAV relays using either millimeter-wave (mmWave) radio-frequency (RF) or free-space optical (FSO) link.
arXiv Detail & Related papers (2020-10-20T09:07:10Z) - Integrating LEO Satellite and UAV Relaying via Reinforcement Learning
for Non-Terrestrial Networks [51.05735925326235]
A mega-constellation of low-earth orbit (LEO) satellites has the potential to enable long-range communication with low latency.
We study the problem of forwarding packets between two faraway ground terminals, through an LEO satellite selected from an orbiting constellation.
To maximize the end-to-end data rate, the satellite association and HAP location should be optimized.
We tackle this problem using deep reinforcement learning (DRL) with a novel action dimension reduction technique.
arXiv Detail & Related papers (2020-05-26T05:39:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.