論文の概要: Minimax Optimal Two-Sample Testing under Local Differential Privacy
- arxiv url: http://arxiv.org/abs/2411.09064v1
- Date: Wed, 13 Nov 2024 22:44:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-15 15:25:29.777119
- Title: Minimax Optimal Two-Sample Testing under Local Differential Privacy
- Title(参考訳): 局所微分プライバシー下での最小二サンプルテスト
- Authors: Jongmin Mun, Seungwoo Kwak, Ilmun Kim,
- Abstract要約: ローカルディファレンシャルプライバシ(LDP)の下でのプライベート2サンプルテストにおけるプライバシと統計ユーティリティのトレードオフについて検討する。
本稿では,Laplace,離散Laplace,GoogleのRAPPORなど,実用的なプライバシメカニズムを用いたプライベートな置換テストを紹介する。
我々は,ビンニングによる連続データの研究を行い,その一様分離率をH"olderとBesovの滑らか度クラスよりもLDPで検討した。
- 参考スコア(独自算出の注目度): 3.3317825075368908
- License:
- Abstract: We explore the trade-off between privacy and statistical utility in private two-sample testing under local differential privacy (LDP) for both multinomial and continuous data. We begin by addressing the multinomial case, where we introduce private permutation tests using practical privacy mechanisms such as Laplace, discrete Laplace, and Google's RAPPOR. We then extend our multinomial approach to continuous data via binning and study its uniform separation rates under LDP over H\"older and Besov smoothness classes. The proposed tests for both discrete and continuous cases rigorously control the type I error for any finite sample size, strictly adhere to LDP constraints, and achieve minimax separation rates under LDP. The attained minimax rates reveal inherent privacy-utility trade-offs that are unavoidable in private testing. To address scenarios with unknown smoothness parameters in density testing, we propose an adaptive test based on a Bonferroni-type approach that ensures robust performance without prior knowledge of the smoothness parameters. We validate our theoretical findings with extensive numerical experiments and demonstrate the practical relevance and effectiveness of our proposed methods.
- Abstract(参考訳): ローカル差分プライバシ(LDP)の下でのプライベート2サンプルテストにおける、多項データと連続データの両方に対するプライバシと統計的ユーティリティのトレードオフについて検討する。
まず、Laplace、離散Laplace、GoogleのRAPPORといった実用的なプライバシーメカニズムを使って、プライベートな置換テストを導入する。
次に、バイナリ化による連続データへの多項的アプローチを拡張し、その一様分離率をH\"older と Besov の滑らか度クラスに対する LDP の下で研究する。
離散ケースと連続ケースのいずれの試験も、有限標本サイズのI型誤差を厳格に制御し、厳密なLPP制約に固執し、LPP下での最小分離率を達成する。
達成されたミニマックスレートは、プライベートテストでは避けられない、固有のプライバシーとユーティリティのトレードオフを明らかにします。
密度試験における未知の滑らか度パラメータを用いたシナリオに対処するため,ボンフェロニ型アプローチに基づく適応テストを提案し,滑らか度パラメータの事前知識を必要とせずに頑健な性能を保証する。
提案手法の実用的妥当性と有効性を示した。
関連論文リスト
- Pseudo-Probability Unlearning: Towards Efficient and Privacy-Preserving Machine Unlearning [59.29849532966454]
本稿では,PseudoProbability Unlearning (PPU)を提案する。
提案手法は,最先端の手法に比べて20%以上の誤りを忘れる改善を実現している。
論文 参考訳(メタデータ) (2024-11-04T21:27:06Z) - Private Language Models via Truncated Laplacian Mechanism [18.77713904999236]
本稿では,高次元トラカート型ラプラシアン機構と呼ばれる新しいプライベート埋め込み手法を提案する。
提案手法は,従来のプライベート単語埋め込み法に比べて分散度が低いことを示す。
注目すべきは、高いプライバシー体制であっても、私たちのアプローチは、プライベートでないシナリオに比べて、実用性がわずかに低下することです。
論文 参考訳(メタデータ) (2024-10-10T15:25:02Z) - Robust Kernel Hypothesis Testing under Data Corruption [6.430258446597413]
データ破損下での頑健な置換テストを構築するための2つの一般的な方法を提案する。
最小限の条件下での力の一貫性を証明する。
これは、潜在的な敵攻撃を伴う現実世界のアプリケーションに対する仮説テストの実践的な展開に寄与する。
論文 参考訳(メタデータ) (2024-05-30T10:23:16Z) - How Private are DP-SGD Implementations? [61.19794019914523]
2種類のバッチサンプリングを使用する場合、プライバシ分析の間に大きなギャップがあることが示される。
その結果,2種類のバッチサンプリングでは,プライバシ分析の間に大きなギャップがあることが判明した。
論文 参考訳(メタデータ) (2024-03-26T13:02:43Z) - Optimal Locally Private Nonparametric Classification with Public Data [2.631955426232593]
本研究では,非パラメトリック分類に着目して,公共データを利用した非対話型局所微分プライベート(LDP)学習の問題点について検討する。
後方ドリフト仮定の下では, LDP制約による最小収束率を導出する。
そこで本研究では,極小最大収束率を達成できる新しい手法である局所微分プライベート分類木を提案する。
論文 参考訳(メタデータ) (2023-11-19T16:35:01Z) - Differentially Private Federated Clustering over Non-IID Data [59.611244450530315]
クラスタリングクラスタ(FedC)問題は、巨大なクライアント上に分散されたラベルなしデータサンプルを、サーバのオーケストレーションの下で有限のクライアントに正確に分割することを目的としている。
本稿では,DP-Fedと呼ばれる差分プライバシー収束手法を用いた新しいFedCアルゴリズムを提案する。
提案するDP-Fedの様々な属性は、プライバシー保護の理論的解析、特に非識別的かつ独立に分散された(非i.d.)データの場合において得られる。
論文 参考訳(メタデータ) (2023-01-03T05:38:43Z) - On the Statistical Complexity of Estimation and Testing under Privacy Constraints [17.04261371990489]
差分プライバシー下での統計的テストのパワーをプラグアンドプレイ方式で特徴付ける方法を示す。
プライバシ保護のレベルが非常に高い場合にのみ、プライバシの維持が顕著なパフォーマンス低下をもたらすことを示す。
最後に,プライベート凸解法であるDP-SGLDアルゴリズムを高信頼度で最大推定できることを示した。
論文 参考訳(メタデータ) (2022-10-05T12:55:53Z) - Individual Privacy Accounting for Differentially Private Stochastic Gradient Descent [69.14164921515949]
DP-SGDで訓練されたモデルをリリースする際の個々の事例に対するプライバシー保証を特徴付ける。
ほとんどの例では、最悪のケースよりも強力なプライバシー保証を享受しています。
これは、モデルユーティリティの観点からは守られないグループが同時に、より弱いプライバシー保証を経験することを意味する。
論文 参考訳(メタデータ) (2022-06-06T13:49:37Z) - A One-Pass Private Sketch for Most Machine Learning Tasks [48.17461258268463]
差別化プライバシ(DP)は、正式な証明可能な保証を通じて、プライバシとユーティリティのトレードオフを説明する魅力的なプライバシ定義である。
本稿では,回帰,分類,密度推定など,多数の機械学習タスクをサポートするプライベートスケッチを提案する。
このスケッチは,局所性に敏感なハッシュをインデックス化して,効率的なワンパスアルゴリズムで構築したランダムな一致テーブルで構成されている。
論文 参考訳(メタデータ) (2020-06-16T17:47:48Z) - Differentially Private Federated Learning with Laplacian Smoothing [72.85272874099644]
フェデレートラーニングは、ユーザ間でプライベートデータを共有せずに、協調的にモデルを学習することで、データのプライバシを保護することを目的としている。
敵は、リリースしたモデルを攻撃することによって、プライベートトレーニングデータを推測することができる。
差別化プライバシは、トレーニングされたモデルの正確性や実用性を著しく低下させる価格で、このような攻撃に対する統計的保護を提供する。
論文 参考訳(メタデータ) (2020-05-01T04:28:38Z) - Minimax optimal goodness-of-fit testing for densities and multinomials
under a local differential privacy constraint [3.265773263570237]
適合性テストにおける局所的な差分プライバシー制約の影響を考察する。
本稿では,未知密度の滑らか度パラメータに適応し,対数係数まで最小限の最適値を維持するテストを提案する。
論文 参考訳(メタデータ) (2020-02-11T08:41:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。