論文の概要: Dynamic technology impact analysis: A multi-task learning approach to patent citation prediction
- arxiv url: http://arxiv.org/abs/2411.09184v1
- Date: Thu, 14 Nov 2024 04:46:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-15 15:25:04.779581
- Title: Dynamic technology impact analysis: A multi-task learning approach to patent citation prediction
- Title(参考訳): 動的技術影響分析:特許引用予測のためのマルチタスク学習アプローチ
- Authors: Youngjin Seol, Jaewoong Choi, Seunghyun Lee, Janghyeok Yoon,
- Abstract要約: 本研究では,マルチタスク学習(MTL)手法を提案する。
まず、異なる期間にわたる引用分析により、テクノロジの影響を定量化し、パターンを識別する。
次に,複数の特許指標を用いた引用数予測のためのMLLモデルを構築した。
- 参考スコア(独自算出の注目度): 13.101554868919711
- License:
- Abstract: Machine learning (ML) models are valuable tools for analyzing the impact of technology using patent citation information. However, existing ML-based methods often struggle to account for the dynamic nature of the technology impact over time and the interdependencies of these impacts across different periods. This study proposes a multi-task learning (MTL) approach to enhance the prediction of technology impact across various time frames by leveraging knowledge sharing and simultaneously monitoring the evolution of technology impact. First, we quantify the technology impacts and identify patterns through citation analysis over distinct time periods. Next, we develop MTL models to predict citation counts using multiple patent indicators over time. Finally, we examine the changes in key input indicators and their patterns over different periods using the SHapley Additive exPlanation method. We also offer guidelines for validating and interpreting the results by employing statistical methods and natural language processing techniques. A case study on battery technologies demonstrates that our approach not only deepens the understanding of technology impact, but also improves prediction accuracy, yielding valuable insights for both academia and industry.
- Abstract(参考訳): 機械学習(ML)モデルは、特許引用情報を用いて技術の影響を分析するための貴重なツールである。
しかしながら、既存のMLベースの手法は、時間とともにテクノロジーの影響の動的性質と、異なる期間にわたってこれらの影響の相互依存性を考慮するのに苦労することが多い。
本研究は,知識共有を活用し,技術インパクトの進化を同時に監視することにより,様々な時間枠における技術インパクトの予測を強化するためのマルチタスク学習(MTL)手法を提案する。
まず、異なる期間にわたる引用分析により、テクノロジの影響を定量化し、パターンを識別する。
次に,複数の特許指標を用いた引用数予測のためのMLLモデルを構築した。
最後に、SHapley Additive exPlanation法を用いて、異なる期間におけるキー入力インジケータとそのパターンの変化について検討する。
また,統計的手法と自然言語処理技術を用いて,結果の検証と解釈のためのガイドラインを提供する。
バッテリー技術に関するケーススタディでは、我々のアプローチが技術への影響の理解を深めるだけでなく、予測精度も向上し、学術と産業の両方に貴重な洞察をもたらすことを示した。
関連論文リスト
- Learning Long-Horizon Predictions for Quadrotor Dynamics [48.08477275522024]
四元数に対する長軸予測力学を効率的に学習するための鍵となる設計選択について検討する。
逐次モデリング手法は,他のタイプの手法と比較して,合成誤差を最小限に抑える上での優位性を示す。
本稿では,モジュール性の向上を図りながら,学習プロセスをさらに単純化する,疎結合な動的学習手法を提案する。
論文 参考訳(メタデータ) (2024-07-17T19:06:47Z) - Differential contributions of machine learning and statistical analysis to language and cognitive sciences [27.152245569974678]
本研究では、Buckeye Speech Corpusを用いて、機械学習と統計分析がデータ駆動型研究にどのように適用されているかを説明する。
それぞれのアプローチの理論的相違、実装手順、ユニークな目的を実証する。
この研究は、対象語に対する文脈的影響を測定する新しい尺度である意味的関連性が、発話中の単語の持続時間を理解するのにどのように貢献するかを強調した。
論文 参考訳(メタデータ) (2024-04-22T10:06:21Z) - Enhancing Fairness and Performance in Machine Learning Models: A Multi-Task Learning Approach with Monte-Carlo Dropout and Pareto Optimality [1.5498930424110338]
本研究では,モデル不確実性を利用した機械学習におけるバイアス軽減手法を提案する。
提案手法では,モンテカルロ・ドロップアウト(MC)と組み合わせたマルチタスク学習(MTL)フレームワークを用いて,保護ラベルに関連する予測の不確実性を評価・緩和する。
論文 参考訳(メタデータ) (2024-04-12T04:17:50Z) - Interpretable and Explainable Machine Learning Methods for Predictive
Process Monitoring: A Systematic Literature Review [1.3812010983144802]
本稿では,機械学習モデル(ML)の予測プロセスマイニングの文脈における説明可能性と解釈可能性について,系統的に検討する。
我々は、様々なアプリケーション領域にまたがる現在の方法論とその応用の概要を概観する。
我々の研究は、プロセス分析のためのより信頼性が高く透明で効果的なインテリジェントシステムの開発と実装方法について、研究者や実践者がより深く理解することを目的としている。
論文 参考訳(メタデータ) (2023-12-29T12:43:43Z) - MinT: Boosting Generalization in Mathematical Reasoning via Multi-View
Fine-Tuning [53.90744622542961]
数学領域における推論は、小言語モデル(LM)にとって重要な課題である。
多様なアノテーションスタイルで既存の数学的問題データセットを利用する新しい手法を提案する。
実験結果から,LLaMA-7Bモデルが先行手法より優れていることが示された。
論文 参考訳(メタデータ) (2023-07-16T05:41:53Z) - Time Associated Meta Learning for Clinical Prediction [78.99422473394029]
本稿では,時間関連メタラーニング(TAML)手法を提案する。
タスク分割後のスパーシリティ問題に対処するため、TAMLは時間情報共有戦略を採用し、正のサンプル数を増やす。
複数の臨床データセットに対するTAMLの有効性を示す。
論文 参考訳(メタデータ) (2023-03-05T03:54:54Z) - Sequential pattern mining in educational data: The application context,
potential, strengths, and limitations [3.680403821470857]
シークエンシャルパターンマイニングは、教育データ科学にとって貴重なツールである。
学習プロセスに関するユニークな洞察を明らかにし、自己統制型学習研究に強力になる。
今後の研究は、パターン発生をカウントするツールを開発することで、教育データ科学における有用性を向上する可能性がある。
論文 参考訳(メタデータ) (2023-02-03T06:56:31Z) - Citation Trajectory Prediction via Publication Influence Representation
Using Temporal Knowledge Graph [52.07771598974385]
既存のアプローチは主に学術論文の時間的データとグラフデータのマイニングに依存している。
本フレームワークは,差分保存グラフ埋め込み,きめ細かい影響表現,学習に基づく軌道計算という3つのモジュールから構成される。
APSアカデミックデータセットとAIPatentデータセットの両方で実験を行った。
論文 参考訳(メタデータ) (2022-10-02T07:43:26Z) - Finite-Time Analysis of Temporal Difference Learning: Discrete-Time
Linear System Perspective [3.5823366350053325]
TD学習は強化学習(RL)の分野における基礎的アルゴリズムである
最近の研究では、有限時間誤差境界を開発することで、その統計的効率に関する保証を明らかにしている。
論文 参考訳(メタデータ) (2022-04-22T03:21:30Z) - Automated Machine Learning Techniques for Data Streams [91.3755431537592]
本稿では、最先端のオープンソースAutoMLツールを調査し、ストリームから収集したデータに適用し、時間とともにパフォーマンスがどのように変化するかを測定する。
この結果から,既製のAutoMLツールで十分な結果が得られることが示されたが,概念ドリフトや検出,適応といった手法が適用されれば,予測精度を時間とともに維持することが可能になる。
論文 参考訳(メタデータ) (2021-06-14T11:42:46Z) - Pre-Trained Models: Past, Present and Future [126.21572378910746]
大規模事前訓練モデル(PTM)は近年大きな成功を収め、人工知能(AI)分野におけるマイルストーンとなった。
知識を巨大なパラメータに格納し、特定のタスクを微調整することで、巨大なパラメータに暗黙的にエンコードされた豊富な知識は、さまざまな下流タスクの恩恵を受けることができる。
AIコミュニティが、モデルをスクラッチから学習するのではなく、下流タスクのバックボーンとしてPTMを採用することは、今、コンセンサスになっている。
論文 参考訳(メタデータ) (2021-06-14T02:40:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。