TANQ-Sim: Tensorcore Accelerated Noisy Quantum System Simulation via QIR on Perlmutter HPC
- URL: http://arxiv.org/abs/2404.13184v2
- Date: Wed, 23 Oct 2024 16:57:29 GMT
- Title: TANQ-Sim: Tensorcore Accelerated Noisy Quantum System Simulation via QIR on Perlmutter HPC
- Authors: Ang Li, Chenxu Liu, Samuel Stein, In-Saeng Suh, Muqing Zheng, Meng Wang, Yue Shi, Bo Fang, Martin Roetteler, Travis Humble,
- Abstract summary: TANQ-Sim is a full-scale density matrix based simulator designed to simulate practical deep circuits with both coherent and non-coherent noise.
To address the significant computational cost associated with such simulations, we propose a new density-matrix simulation approach.
To optimize performance, we also propose specific gate fusion techniques for density matrix simulation.
- Score: 16.27167995786167
- License:
- Abstract: Although there have been remarkable advances in quantum computing (QC), it remains crucial to simulate quantum programs using classical large-scale parallel computing systems to validate quantum algorithms, comprehend the impact of noise, and develop resilient quantum applications. This is particularly important for bridging the gap between near-term noisy-intermediate-scale-quantum (NISQ) computing and future fault-tolerant quantum computing (FTQC). Nevertheless, current simulation methods either lack the capability to simulate noise, or simulate with excessive computational costs, or do not scale out effectively. In this paper, we propose TANQ-Sim, a full-scale density matrix based simulator designed to simulate practical deep circuits with both coherent and non-coherent noise. To address the significant computational cost associated with such simulations, we propose a new density-matrix simulation approach that enables TANQ-Sim to leverage the latest double-precision tensorcores (DPTCs) in NVIDIA Ampere and Hopper GPUs. To the best of our knowledge, this is the first application of double-precision tensorcores for non-AI/ML workloads. To optimize performance, we also propose specific gate fusion techniques for density matrix simulation. For scaling, we rely on the advanced GPU-side communication library NVSHMEM and propose effective optimization methods for enhancing communication efficiency. Evaluations on the NERSC Perlmutter supercomputer demonstrate the functionality, performance, and scalability of the simulator. We also present three case studies to showcase the practical usage of TANQ-Sim, including teleportation, entanglement distillation, and Ising simulation. TANQ-Sim will be released on GitHub.
Related papers
- Introducing UNIQuE: The Unconventional Noiseless Intermediate Quantum Emulator [0.0]
We implement the first open-source quantum computing emulator.
It includes arithmetic operations, the quantum Fourier transform, and quantum phase estimation.
It provides significant savings in both temporal and spatial resources compared to simulation.
arXiv Detail & Related papers (2024-09-11T04:24:51Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - A Framework for Integrating Quantum Simulation and High Performance Computing [0.0]
We describe a framework to help streamline access to quantum simulation software running on HPC resources.
This includes an interface for circuit-based quantum computing tasks, as well as the necessary resource management infrastructure.
arXiv Detail & Related papers (2024-08-15T11:48:14Z) - Quantum Tunneling: From Theory to Error-Mitigated Quantum Simulation [49.1574468325115]
This study presents the theoretical background and the hardware aware circuit implementation of a quantum tunneling simulation.
We use error mitigation techniques (ZNE and REM) and multiprogramming of the quantum chip for solving the hardware under-utilization problem.
arXiv Detail & Related papers (2024-04-10T14:27:07Z) - Quantum Simulation of Dissipative Energy Transfer via Noisy Quantum
Computer [0.40964539027092917]
We propose a practical approach to simulate the dynamics of an open quantum system on a noisy computer.
Our method leverages gate noises on the IBM-Q real device, enabling us to perform calculations using only two qubits.
In the last, to deal with the increasing depth of quantum circuits when doing Trotter expansion, we introduced the transfer tensor method(TTM) to extend our short-term dynamics simulation.
arXiv Detail & Related papers (2023-12-03T13:56:41Z) - Distributed Simulation of Statevectors and Density Matrices [0.0]
This manuscript presents a plethora of novel algorithms for distributed full-state simulation of gates, operators, noise channels and other calculations in digital quantum computers.
We show how a simple, common but seemingly restrictive distribution model actually permits a rich set of advanced facilities.
Our results are derived in language familiar to a quantum information theory audience, and our algorithms formalised for the scientific simulation community.
arXiv Detail & Related papers (2023-11-02T18:00:36Z) - Efficient Quantum Circuit Simulation by Tensor Network Methods on Modern GPUs [11.87665112550076]
In quantum hardware, primary simulation methods are based on state vectors and tensor networks.
As the number of qubits and quantum gates grows larger, traditional state-vector based quantum circuit simulation methods prove inadequate due to the overwhelming size of the Hilbert space and extensive entanglement.
In this study, we propose general optimization strategies from two aspects: computational efficiency and accuracy.
arXiv Detail & Related papers (2023-10-06T02:24:05Z) - Tensor Networks or Decision Diagrams? Guidelines for Classical Quantum
Circuit Simulation [65.93830818469833]
tensor networks and decision diagrams have independently been developed with differing perspectives, terminologies, and backgrounds in mind.
We consider how these techniques approach classical quantum circuit simulation, and examine their (dis)similarities with regard to their most applicable abstraction level.
We provide guidelines for when to better use tensor networks and when to better use decision diagrams in classical quantum circuit simulation.
arXiv Detail & Related papers (2023-02-13T19:00:00Z) - Parallel Simulation of Quantum Networks with Distributed Quantum State
Management [56.24769206561207]
We identify requirements for parallel simulation of quantum networks and develop the first parallel discrete event quantum network simulator.
Our contributions include the design and development of a quantum state manager that maintains shared quantum information distributed across multiple processes.
We release the parallel SeQUeNCe simulator as an open-source tool alongside the existing sequential version.
arXiv Detail & Related papers (2021-11-06T16:51:17Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
We present a modernized version of the Quantum Virtual Machine (TNQVM) which serves as a quantum circuit simulation backend in the e-scale ACCelerator (XACC) framework.
The new version is based on the general purpose, scalable network processing library, ExaTN, and provides multiple quantum circuit simulators.
By combining the portable XACC quantum processors and the scalable ExaTN backend we introduce an end-to-end virtual development environment which can scale from laptops to future exascale platforms.
arXiv Detail & Related papers (2021-04-21T13:26:42Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.