Prices, Bids, Values: Everything, Everywhere, All at Once
- URL: http://arxiv.org/abs/2411.09355v1
- Date: Thu, 14 Nov 2024 10:56:00 GMT
- Title: Prices, Bids, Values: Everything, Everywhere, All at Once
- Authors: Ermis Soumalias, Jakob Heiss, Jakob Weissteiner, Sven Seuken,
- Abstract summary: We study the design of iterative auctions (ICAs)
We propose a novel machine learning algorithm that integrates the full information from both query types.
We present MLHCA, the most efficient ICA ever designed.
- Score: 13.724491757145385
- License:
- Abstract: We study the design of iterative combinatorial auctions (ICAs). The main challenge in this domain is that the bundle space grows exponentially in the number of items. To address this, several papers have recently proposed machine learning (ML)-based preference elicitation algorithms that aim to elicit only the most important information from bidders to maximize efficiency. The SOTA ML-based algorithms elicit bidders' preferences via value queries (i.e., "What is your value for the bundle $\{A,B\}$?"). However, the most popular iterative combinatorial auction in practice elicits information via more practical \emph{demand queries} (i.e., "At prices $p$, what is your most preferred bundle of items?"). In this paper, we examine the advantages of value and demand queries from both an auction design and an ML perspective. We propose a novel ML algorithm that provably integrates the full information from both query types. As suggested by our theoretical analysis, our experimental results verify that combining demand and value queries results in significantly better learning performance. Building on these insights, we present MLHCA, the most efficient ICA ever designed. MLHCA substantially outperforms the previous SOTA in realistic auction settings, delivering large efficiency gains. Compared to the previous SOTA, MLHCA reduces efficiency loss by up to a factor of 10, and in the most challenging and realistic domain, MLHCA outperforms the previous SOTA using 30% fewer queries. Thus, MLHCA achieves efficiency improvements that translate to welfare gains of hundreds of millions of USD, while also reducing the cognitive load on the bidders, establishing a new benchmark both for practicability and for economic impact.
Related papers
- Procurement Auctions via Approximately Optimal Submodular Optimization [53.93943270902349]
We study procurement auctions, where an auctioneer seeks to acquire services from strategic sellers with private costs.
Our goal is to design computationally efficient auctions that maximize the difference between the quality of the acquired services and the total cost of the sellers.
arXiv Detail & Related papers (2024-11-20T18:06:55Z) - Optima: Optimizing Effectiveness and Efficiency for LLM-Based Multi-Agent System [75.25394449773052]
Large Language Model (LLM) based multi-agent systems (MAS) show remarkable potential in collaborative problem-solving.
Yet they still face critical challenges: low communication efficiency, poor scalability, and a lack of effective parameter-updating optimization methods.
We present Optima, a novel framework that addresses these issues by significantly enhancing both communication efficiency and task effectiveness.
arXiv Detail & Related papers (2024-10-10T17:00:06Z) - MetaLLM: A High-performant and Cost-efficient Dynamic Framework for Wrapping LLMs [21.689490112983677]
We introduce MetaLLM, a framework that dynamically routes each query to the optimal large language models (LLMs) for classification tasks.
By framing the selection problem as a multi-armed bandit, MetaLLM balances prediction accuracy and cost efficiency under uncertainty.
Our experiments, conducted on popular LLM platforms, showcase MetaLLM's efficacy in real-world scenarios.
arXiv Detail & Related papers (2024-07-15T15:45:07Z) - Cost-Effective Proxy Reward Model Construction with On-Policy and Active Learning [70.22819290458581]
Reinforcement learning with human feedback (RLHF) is a widely adopted approach in current large language model pipelines.
Our approach introduces two key innovations: (1) on-policy query to avoid OOD and imbalance issues in seed data, and (2) active learning to select the most informative data for preference queries.
arXiv Detail & Related papers (2024-07-02T10:09:19Z) - Monte Carlo Tree Search Boosts Reasoning via Iterative Preference Learning [55.96599486604344]
We introduce an approach aimed at enhancing the reasoning capabilities of Large Language Models (LLMs) through an iterative preference learning process.
We use Monte Carlo Tree Search (MCTS) to iteratively collect preference data, utilizing its look-ahead ability to break down instance-level rewards into more granular step-level signals.
The proposed algorithm employs Direct Preference Optimization (DPO) to update the LLM policy using this newly generated step-level preference data.
arXiv Detail & Related papers (2024-05-01T11:10:24Z) - Reinforcement Learning from Human Feedback with Active Queries [67.27150911254155]
Current reinforcement learning approaches often require a large amount of human-labelled preference data.
We propose query-efficient RLHF methods, inspired by the success of active learning.
Our experiments show that ADPO, while only making about half of queries for human preference, matches the performance of the state-of-the-art DPO method.
arXiv Detail & Related papers (2024-02-14T18:58:40Z) - Routing to the Expert: Efficient Reward-guided Ensemble of Large
Language Models [69.51130760097818]
We propose Zooter, a reward-guided routing method distilling rewards on training queries to train a routing function.
We evaluate Zooter on a comprehensive benchmark collection with 26 subsets on different domains and tasks.
arXiv Detail & Related papers (2023-11-15T04:40:43Z) - Machine Learning-Powered Combinatorial Clock Auction [13.724491757145385]
We study the design of iterative auctions (ICAs)
We present a novel method for training an ML model on demand queries.
We experimentally evaluate our ML-based demand mechanism in several spectrum auction domains.
arXiv Detail & Related papers (2023-08-20T10:43:50Z) - Neural Auction: End-to-End Learning of Auction Mechanisms for E-Commerce
Advertising [42.7415188090209]
We develop deep models to efficiently extract contexts from auctions, providing rich features for auction design.
DNAs have been successfully deployed in the e-commerce advertising system at Taobao.
arXiv Detail & Related papers (2021-06-07T13:20:40Z) - A Game-Theoretic Analysis of the Empirical Revenue Maximization
Algorithm with Endogenous Sampling [19.453243313852557]
Empirical Revenue Maximization (ERM) is one of the most important price learning algorithms in auction design.
We generalize the definition of an incentive-awareness measure proposed by Lavi et al to quantify the reduction of ERM's outputted price due to a change of $mge 1$ out of $N$ input samples.
We construct an efficient, approximately incentive-compatible, and revenue-optimal learning algorithm using ERM in repeated auctions against non-myopic bidders, and show approximate group incentive-compatibility in uniform-price auctions.
arXiv Detail & Related papers (2020-10-12T08:20:35Z) - Auction learning as a two-player game [19.706363403596196]
Auction Design is a two-player game with stationary utility functions.
Design an incentive that maximizes expected revenue is a central problem in Auction Design.
arXiv Detail & Related papers (2020-06-10T06:45:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.