論文の概要: Sparse Bayesian Generative Modeling for Compressive Sensing
- arxiv url: http://arxiv.org/abs/2411.09483v1
- Date: Thu, 14 Nov 2024 14:37:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-15 15:24:51.995342
- Title: Sparse Bayesian Generative Modeling for Compressive Sensing
- Title(参考訳): 圧縮センシングのためのスパースベイズ生成モデル
- Authors: Benedikt Böck, Sadaf Syed, Wolfgang Utschick,
- Abstract要約: この研究は、圧縮センシング(CS)における基本的な線形逆問題に、新しいタイプの正規化生成先行を導入することで対処する。
提案手法は変分推論の概念を用いて理論的に支援し,異なる種類の圧縮可能な信号を用いて実験的に検証する。
- 参考スコア(独自算出の注目度): 8.666730973498625
- License:
- Abstract: This work addresses the fundamental linear inverse problem in compressive sensing (CS) by introducing a new type of regularizing generative prior. Our proposed method utilizes ideas from classical dictionary-based CS and, in particular, sparse Bayesian learning (SBL), to integrate a strong regularization towards sparse solutions. At the same time, by leveraging the notion of conditional Gaussianity, it also incorporates the adaptability from generative models to training data. However, unlike most state-of-the-art generative models, it is able to learn from a few compressed and noisy data samples and requires no optimization algorithm for solving the inverse problem. Additionally, similar to Dirichlet prior networks, our model parameterizes a conjugate prior enabling its application for uncertainty quantification. We support our approach theoretically through the concept of variational inference and validate it empirically using different types of compressible signals.
- Abstract(参考訳): この研究は、圧縮センシング(CS)における基本的な線形逆問題に、新しいタイプの正規化生成先行を導入することで対処する。
提案手法は,古典辞書に基づくCSのアイデア,特にスパースベイズ学習(SBL)を用いて,スパース解に対する強い正規化を統合する。
同時に、条件付きガウス性の概念を活用することにより、生成モデルからトレーニングデータへの適応性も取り入れている。
しかし、ほとんどの最先端生成モデルとは異なり、いくつかの圧縮されたノイズの多いデータサンプルから学習することができ、逆問題の解法に最適化アルゴリズムを必要としない。
さらに、ディリクレ以前のネットワークと同様に、我々のモデルは共役をパラメータ化し、不確実な定量化にその適用を可能にする。
提案手法は変分推論の概念を用いて理論的に支援し,異なる種類の圧縮可能な信号を用いて実験的に検証する。
関連論文リスト
- Improving Diffusion Models for Inverse Problems Using Optimal Posterior Covariance [52.093434664236014]
近年の拡散モデルは、特定の逆問題に対して再訓練することなく、ノイズの多い線形逆問題に対する有望なゼロショット解を提供する。
この発見に触発されて、我々は、最大推定値から決定されるより原理化された共分散を用いて、最近の手法を改善することを提案する。
論文 参考訳(メタデータ) (2024-02-03T13:35:39Z) - MAST: Model-Agnostic Sparsified Training [4.962431253126472]
我々は、ブラックボックス関数として機械学習モデル損失を最小限に抑える従来の方法から外れた、新しい最適化問題の定式化を導入する。
従来の定式化とは異なり、提案手法は、初期訓練されたモデルとランダムスケッチ演算子を明示的に組み込む。
本稿では,新しい問題定式化に適応したグラディエント・ディキセント法(SGD)のいくつかの変種について述べる。
論文 参考訳(メタデータ) (2023-11-27T18:56:03Z) - Approximate Message Passing for the Matrix Tensor Product Model [8.206394018475708]
本稿では,行列テンソル積モデルに対する近似メッセージパッシング(AMP)アルゴリズムの提案と解析を行う。
非可分関数に対する収束定理に基づいて、非可分関数に対する状態発展を証明する。
我々は、この状態進化結果を利用して、関心の信号の回復に必要な十分な条件を提供する。
論文 参考訳(メタデータ) (2023-06-27T16:03:56Z) - Reflected Diffusion Models [93.26107023470979]
本稿では,データのサポートに基づいて進化する反射微分方程式を逆転する反射拡散モデルを提案する。
提案手法は,一般化されたスコアマッチング損失を用いてスコア関数を学習し,標準拡散モデルの主要成分を拡張する。
論文 参考訳(メタデータ) (2023-04-10T17:54:38Z) - Variational Laplace Autoencoders [53.08170674326728]
変分オートエンコーダは、遅延変数の後部を近似するために、償却推論モデルを用いる。
完全分解ガウス仮定の限定的後部表現性に対処する新しい手法を提案する。
また、深部生成モデルのトレーニングのための変分ラプラスオートエンコーダ(VLAE)という一般的なフレームワークも提示する。
論文 参考訳(メタデータ) (2022-11-30T18:59:27Z) - A Sparsity-promoting Dictionary Model for Variational Autoencoders [16.61511959679188]
深層生成モデルにおける潜伏空間の構造化は、より表現力のあるモデルと解釈可能な表現を得るために重要である。
本稿では,空間の空間構造をスパーシティ・プロモーティング・辞書・モデルを用いて簡易かつ効果的に構築する手法を提案する。
論文 参考訳(メタデータ) (2022-03-29T17:13:11Z) - A Variational Inference Approach to Inverse Problems with Gamma
Hyperpriors [60.489902135153415]
本稿では,ガンマハイパープライヤを用いた階層的逆問題に対する変分反復交替方式を提案する。
提案した変分推論手法は正確な再構成を行い、意味のある不確実な定量化を提供し、実装が容易である。
論文 参考訳(メタデータ) (2021-11-26T06:33:29Z) - Provably Convergent Algorithms for Solving Inverse Problems Using
Generative Models [47.208080968675574]
より完全な理解を伴う逆問題における生成モデルの利用について検討する。
我々は様々な逆問題を解くための実験結果を用いて主張を支持する。
我々は,モデルミスマッチ(生成前処理が必ずしも適用されない状況)を処理する手法の拡張を提案する。
論文 参考訳(メタデータ) (2021-05-13T15:58:27Z) - Control as Hybrid Inference [62.997667081978825]
本稿では、反復推論と償却推論のバランスを自然に仲介するCHIの実装について述べる。
連続的な制御ベンチマークでアルゴリズムのスケーラビリティを検証し、強力なモデルフリーおよびモデルベースラインを上回る性能を示す。
論文 参考訳(メタデータ) (2020-07-11T19:44:09Z) - Uncertainty Modelling in Risk-averse Supply Chain Systems Using
Multi-objective Pareto Optimization [0.0]
サプライチェーンモデリングにおける困難なタスクの1つは、不規則な変動に対して堅牢なモデルを構築することである。
我々は、不確実性を扱うためのパレート最適化(Pareto Optimization)という新しい手法を導入し、これらの不確実性のエントロピーをアプリオリ仮定の下で明示的にモデル化することで拘束する。
論文 参考訳(メタデータ) (2020-04-24T21:04:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。