論文の概要: Towards a Fairer Non-negative Matrix Factorization
- arxiv url: http://arxiv.org/abs/2411.09847v1
- Date: Thu, 14 Nov 2024 23:34:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-18 15:39:22.334168
- Title: Towards a Fairer Non-negative Matrix Factorization
- Title(参考訳): より公平な非負行列分解に向けて
- Authors: Lara Kassab, Erin George, Deanna Needell, Haowen Geng, Nika Jafar Nia, Aoxi Li,
- Abstract要約: 非負行列因子化(NMF)がデータ群の表現に偏りをもたらすかを検討する。
異なるグループに対する最大再構成損失を最小化するFairer-NMFという手法を提案する。
- 参考スコア(独自算出の注目度): 6.069820038869034
- License:
- Abstract: Topic modeling, or more broadly, dimensionality reduction, techniques provide powerful tools for uncovering patterns in large datasets and are widely applied across various domains. We investigate how Non-negative Matrix Factorization (NMF) can introduce bias in the representation of data groups, such as those defined by demographics or protected attributes. We present an approach, called Fairer-NMF, that seeks to minimize the maximum reconstruction loss for different groups relative to their size and intrinsic complexity. Further, we present two algorithms for solving this problem. The first is an alternating minimization (AM) scheme and the second is a multiplicative updates (MU) scheme which demonstrates a reduced computational time compared to AM while still achieving similar performance. Lastly, we present numerical experiments on synthetic and real datasets to evaluate the overall performance and trade-offs of Fairer-NMF
- Abstract(参考訳): トピックモデリング(あるいはより広義に言えば、次元削減技術は、大規模なデータセットのパターンを明らかにする強力なツールを提供し、様々な領域に広く適用されている。
本研究では,非負行列因子化(NMF)が,人口統計学や保護属性などのデータ群の表現に偏りをもたらすかを検討する。
本稿では,Fairer-NMFと呼ばれる手法を提案する。
さらに,この問題を解くためのアルゴリズムを2つ提案する。
1つは交代最小化(AM)方式、もう1つは乗算更新(MU)方式で、同様の性能を保ちながら、AMと比較して計算時間を短縮する。
最後に、Fairer-NMFの全体的な性能とトレードオフを評価するために、合成データセットおよび実データセットに関する数値実験を示す。
関連論文リスト
- Multi-modal Multi-view Clustering based on Non-negative Matrix
Factorization [0.0]
本稿では,マルチモーダルクラスタリングアルゴリズムについて検討し,マルチモーダル・マルチビュー非負行列分解法を提案する。
実験の結果,様々なデータセットを用いて評価した提案手法の有効性が示された。
論文 参考訳(メタデータ) (2023-08-09T08:06:03Z) - Contaminated Images Recovery by Implementing Non-negative Matrix
Factorisation [0.0]
我々は,従来のNMF,HCNMF,L2,1-NMFアルゴリズムのロバスト性を理論的に検討し,ORLおよび拡張YaleBデータセットのロバスト性を示す実験セットを実行する。
これらの手法の計算コストのため、HCNMFやL2,1-NMFモデルのような最終モデルは、この研究のパラメータに収束しない。
論文 参考訳(メタデータ) (2022-11-08T13:50:27Z) - Non-Negative Matrix Factorization with Scale Data Structure Preservation [23.31865419578237]
本稿では,データ表現と次元縮小のために設計された非負行列分解法に属するモデルについて述べる。
この考え方は、NMFコスト関数に、元のデータポイントと変換されたデータポイントのペアの類似度行列のスケール関係を課すペナルティ項を追加することである。
提案したクラスタリングアルゴリズムは,既存のNMFベースのアルゴリズムや,実際のデータセットに適用した場合の多様体学習ベースのアルゴリズムと比較される。
論文 参考訳(メタデータ) (2022-09-22T09:32:18Z) - Feature Weighted Non-negative Matrix Factorization [92.45013716097753]
本稿では,FNMF(Feature weighted Non- negative Matrix Factorization)を提案する。
FNMFはその重要性に応じて特徴の重みを適応的に学習する。
提案する最適化アルゴリズムを用いて効率的に解くことができる。
論文 参考訳(メタデータ) (2021-03-24T21:17:17Z) - Entropy Minimizing Matrix Factorization [102.26446204624885]
NMF(Nonnegative Matrix Factorization)は、広く使用されているデータ分析技術であり、多くの実際のタスクで印象的な結果をもたらしました。
本研究では,上述の問題に対処するために,EMMF (Entropy Minimizing Matrix Factorization framework) を開発した。
通常、外れ値が通常のサンプルよりもはるかに小さいことを考えると、行列分解のために新しいエントロピー損失関数が確立される。
論文 参考訳(メタデータ) (2021-03-24T21:08:43Z) - Self-supervised Symmetric Nonnegative Matrix Factorization [82.59905231819685]
シンメトリー非負係数行列(SNMF)は、データクラスタリングの強力な方法であることを示した。
より良いクラスタリング結果を求めるアンサンブルクラスタリングにインスパイアされた,自己監視型SNMF(S$3$NMF)を提案する。
SNMFのコード特性に対する感度を、追加情報に頼らずに活用しています。
論文 参考訳(メタデータ) (2021-03-02T12:47:40Z) - Sparse PCA via $l_{2,p}$-Norm Regularization for Unsupervised Feature
Selection [138.97647716793333]
再構成誤差を$l_2,p$ノルム正規化と組み合わせることで,単純かつ効率的な特徴選択手法を提案する。
提案する非教師付きモデルを解くための効率的な最適化アルゴリズムを提案し,アルゴリズムの収束と計算の複雑さを理論的に解析する。
論文 参考訳(メタデータ) (2020-12-29T04:08:38Z) - Discriminatively Constrained Semi-supervised Multi-view Nonnegative
Matrix Factorization with Graph Regularization [10.978930376656423]
差別的制約付きセミスーパービジョン・マルチビュー非負行列因子化(DCS2MVNMF)を提案する。
具体的には、各ビューの補助マトリックスに対して差別的重み付け行列を導入し、クラス間の区別を高める。
さらに,複数のビューを整列し,対応する反復最適化スキームを完成させるために,新しい機能スケール正規化戦略を設計する。
論文 参考訳(メタデータ) (2020-10-26T02:58:11Z) - Positive Semidefinite Matrix Factorization: A Connection with Phase
Retrieval and Affine Rank Minimization [71.57324258813674]
位相探索(PR)とアフィンランク最小化(ARM)アルゴリズムに基づいてPSDMFアルゴリズムを設計可能であることを示す。
このアイデアに触発され、反復的ハードしきい値(IHT)に基づくPSDMFアルゴリズムの新たなファミリーを導入する。
論文 参考訳(メタデータ) (2020-07-24T06:10:19Z) - Two-Dimensional Semi-Nonnegative Matrix Factorization for Clustering [50.43424130281065]
TS-NMFと呼ばれる2次元(2次元)データに対する新しい半負行列分解法を提案する。
前処理ステップで2次元データをベクトルに変換することで、データの空間情報に深刻なダメージを与える既存の手法の欠点を克服する。
論文 参考訳(メタデータ) (2020-05-19T05:54:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。