論文の概要: DiffFNO: Diffusion Fourier Neural Operator
- arxiv url: http://arxiv.org/abs/2411.09911v1
- Date: Fri, 15 Nov 2024 03:14:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-18 15:38:19.565861
- Title: DiffFNO: Diffusion Fourier Neural Operator
- Title(参考訳): DiffFNO:拡散フーリエニューラル演算子
- Authors: Xiaoyi Liu, Hao Tang,
- Abstract要約: 重み付きフーリエニューラル演算子(WFNO)により強化された任意のスケール超解像のための新しい拡散フレームワークDiffFNOを紹介する。
DiffFNOは、PSNRの2~4dBのマージンで、様々なスケーリング要因にまたがる既存の手法よりも優れた、最先端のSOTA(State-of-the-art)結果が得られることを示す。
提案手法は,高精度かつ計算効率の両面において,超解像の新たな標準を定めている。
- 参考スコア(独自算出の注目度): 8.895165270489167
- License:
- Abstract: We introduce DiffFNO, a novel diffusion framework for arbitrary-scale super-resolution strengthened by a Weighted Fourier Neural Operator (WFNO). Mode Re-balancing in WFNO effectively captures critical frequency components, significantly improving the reconstruction of high-frequency image details that are crucial for super-resolution tasks. Gated Fusion Mechanism (GFM) adaptively complements WFNO's spectral features with spatial features from an Attention-based Neural Operator (AttnNO). This enhances the network's capability to capture both global structures and local details. Adaptive Time-Step (ATS) ODE solver, a deterministic sampling strategy, accelerates inference without sacrificing output quality by dynamically adjusting integration step sizes ATS. Extensive experiments demonstrate that DiffFNO achieves state-of-the-art (SOTA) results, outperforming existing methods across various scaling factors by a margin of 2 to 4 dB in PSNR, including those beyond the training distribution. It also achieves this at lower inference time. Our approach sets a new standard in super-resolution, delivering both superior accuracy and computational efficiency.
- Abstract(参考訳): 重み付きフーリエニューラル演算子(WFNO)により強化された任意のスケール超解像のための新しい拡散フレームワークであるDiffFNOを紹介する。
WFNOにおけるモード再バランシングは、重要な周波数成分を効果的に捕捉し、超分解能タスクに不可欠な高周波画像の再現を大幅に改善する。
Gated Fusion Mechanism (GFM) は、WFNOのスペクトル特徴とアテンションベースのニューラル演算子(AttnNO)の空間的特徴を適応的に補完する。
これにより、グローバル構造とローカル詳細の両方をキャプチャするネットワークの能力が向上する。
適応時間ステップ(ATS)ODEソルバは,積分ステップサイズを動的に調整することにより,出力品質を犠牲にすることなく推論を高速化する。
大規模な実験により、DiffFNOは、トレーニング分布を超えるものを含むPSNRの2~4dBのマージンで、様々なスケーリング要因にまたがる既存の手法よりも優れた、最先端のSOTA(State-of-the-art)結果が得られることが示された。
推論時間の短縮も実現している。
提案手法は,高精度かつ計算効率の両面において,超解像の新たな標準を定めている。
関連論文リスト
- Few-shot NeRF by Adaptive Rendering Loss Regularization [78.50710219013301]
スパース入力を用いた新しいビュー合成はニューラルラジアンス場(NeRF)に大きな課題をもたらす
近年の研究では、位置レンダリングの周波数規則化は、数発のNeRFに対して有望な結果が得られることが示されている。
我々は,AR-NeRFと呼ばれる数発のNeRFに対して適応レンダリング損失正規化を提案する。
論文 参考訳(メタデータ) (2024-10-23T13:05:26Z) - FRDiff : Feature Reuse for Universal Training-free Acceleration of Diffusion Models [16.940023904740585]
拡散モデルに固有の時間的冗長性を活用する高度な加速手法を提案する。
時間的類似度の高い特徴マップの再利用は、出力品質を損なうことなく計算資源を節約する新たな機会を開く。
論文 参考訳(メタデータ) (2023-12-06T14:24:26Z) - Learning k-Level Structured Sparse Neural Networks Using Group Envelope Regularization [4.0554893636822]
制約のあるリソースに大規模ディープニューラルネットワークをデプロイするための新しいアプローチを導入する。
この手法は推論時間を短縮し、メモリ需要と消費電力を減らすことを目的とする。
論文 参考訳(メタデータ) (2022-12-25T15:40:05Z) - Incremental Spatial and Spectral Learning of Neural Operators for
Solving Large-Scale PDEs [86.35471039808023]
Incrmental Fourier Neural Operator (iFNO)を導入し、モデルが使用する周波数モードの数を徐々に増加させる。
iFNOは、各種データセット間の一般化性能を維持したり改善したりしながら、トレーニング時間を短縮する。
提案手法は,既存のフーリエニューラル演算子に比べて20%少ない周波数モードを用いて,10%低いテスト誤差を示すとともに,30%高速なトレーニングを実現する。
論文 参考訳(メタデータ) (2022-11-28T09:57:15Z) - Transform Once: Efficient Operator Learning in Frequency Domain [69.74509540521397]
本研究では、周波数領域の構造を利用して、空間や時間における長距離相関を効率的に学習するために設計されたディープニューラルネットワークについて検討する。
この研究は、単一変換による周波数領域学習のための青写真を導入している。
論文 参考訳(メタデータ) (2022-11-26T01:56:05Z) - Factorized Fourier Neural Operators [77.47313102926017]
Factorized Fourier Neural Operator (F-FNO) は偏微分方程式をシミュレートする学習法である。
我々は,数値解法よりも桁違いに高速に動作しながら,誤差率2%を維持していることを示す。
論文 参考訳(メタデータ) (2021-11-27T03:34:13Z) - Neural Calibration for Scalable Beamforming in FDD Massive MIMO with
Implicit Channel Estimation [10.775558382613077]
チャネル推定とビームフォーミングは、周波数分割二重化(FDD)大規模マルチインプット多重出力(MIMO)システムにおいて重要な役割を果たす。
受信したアップリンクパイロットに応じて,基地局のビームフォーマを直接最適化する深層学習方式を提案する。
エンド・ツー・エンドの設計のスケーラビリティを向上させるために,ニューラルキャリブレーション法を提案する。
論文 参考訳(メタデータ) (2021-08-03T14:26:14Z) - Fourier Space Losses for Efficient Perceptual Image Super-Resolution [131.50099891772598]
提案した損失関数の適用のみで,最近導入された効率的なジェネレータアーキテクチャの性能向上が可能であることを示す。
フーリエ空間における周波数に対する損失の直接的強調は知覚的画質を著しく向上させることを示す。
訓練されたジェネレータは、最先端の知覚的SR法である RankSRGAN と SRFlow よりも2.4倍、48倍高速である。
論文 参考訳(メタデータ) (2021-06-01T20:34:52Z) - Iterative Network for Image Super-Resolution [69.07361550998318]
単一画像超解像(SISR)は、最近の畳み込みニューラルネットワーク(CNN)の発展により、大幅に活性化されている。
本稿では、従来のSISRアルゴリズムに関する新たな知見を提供し、反復最適化に依存するアプローチを提案する。
反復最適化の上に,新しい反復型超解像ネットワーク (ISRN) を提案する。
論文 参考訳(メタデータ) (2020-05-20T11:11:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。