論文の概要: Self-Supervised Learning with Probabilistic Density Labeling for Rainfall Probability Estimation
- arxiv url: http://arxiv.org/abs/2412.05825v1
- Date: Sun, 08 Dec 2024 05:56:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:57:00.669136
- Title: Self-Supervised Learning with Probabilistic Density Labeling for Rainfall Probability Estimation
- Title(参考訳): 降雨確率推定のための確率密度ラベル付き自己教師付き学習
- Authors: Junha Lee, Sojung An, Sujeong You, Namik Cho,
- Abstract要約: SSLPDLはNWP予測を後処理することで降雨確率を推定するための後処理手法である。
極端気象現象のクラス不均衡に対処するために,確率密度に基づく簡単なラベル付け手法を提案する。
実験の結果,SSLPDLは地域降水後処理において,他の降水予測モデルを上回ることがわかった。
- 参考スコア(独自算出の注目度): 16.086011448639635
- License:
- Abstract: Numerical weather prediction (NWP) models are fundamental in meteorology for simulating and forecasting the behavior of various atmospheric variables. The accuracy of precipitation forecasts and the acquisition of sufficient lead time are crucial for preventing hazardous weather events. However, the performance of NWP models is limited by the nonlinear and unpredictable patterns of extreme weather phenomena driven by temporal dynamics. In this regard, we propose a \textbf{S}elf-\textbf{S}upervised \textbf{L}earning with \textbf{P}robabilistic \textbf{D}ensity \textbf{L}abeling (SSLPDL) for estimating rainfall probability by post-processing NWP forecasts. Our post-processing method uses self-supervised learning (SSL) with masked modeling for reconstructing atmospheric physics variables, enabling the model to learn the dependency between variables. The pre-trained encoder is then utilized in transfer learning to a precipitation segmentation task. Furthermore, we introduce a straightforward labeling approach based on probability density to address the class imbalance in extreme weather phenomena like heavy rain events. Experimental results show that SSLPDL surpasses other precipitation forecasting models in regional precipitation post-processing and demonstrates competitive performance in extending forecast lead times. Our code is available at https://github.com/joonha425/SSLPDL
- Abstract(参考訳): 数値気象予測(NWP)モデルは、様々な大気変数の挙動をシミュレーションし予測するための気象学の基本である。
降雨予測の精度と十分なリードタイムの取得は、有害な気象イベントを防ぐために不可欠である。
しかし、NWPモデルの性能は、時間的ダイナミクスによって引き起こされる極端気象現象の非線形かつ予測不可能なパターンによって制限される。
そこで本稿では,NWP予測の後処理により降雨確率を推定するために, {textbf{S}elf-\textbf{S}upervised \textbf{L}earning with \textbf{P}robabilistic \textbf{D}ensity \textbf{L}abeling (SSLPDL)を提案する。
ポストプロセッシングでは, 自己教師付き学習(SSL)とマスク付きモデリングを用いて, 大気物理変数の再構成を行い, モデルが変数間の依存性を学習できるようにする。
予め訓練されたエンコーダは、降水セグメンテーションタスクへの転送学習に使用される。
さらに,豪雨などの極端な気象現象のクラス不均衡に対処するために,確率密度に基づく簡単なラベル付け手法を導入する。
実験の結果,SSLPDLは地域降水後処理において他の降水予測モデルを上回る傾向を示し,予報リードタイムを延ばす上での競争性能を示した。
私たちのコードはhttps://github.com/joonha425/SSLPDLで利用可能です。
関連論文リスト
- PostCast: Generalizable Postprocessing for Precipitation Nowcasting via Unsupervised Blurriness Modeling [85.56969895866243]
本稿では,ぼやけた予測とそれに対応する土台真実のペアによるトレーニングを必要とせずに,ぼやけを解消するための教師なしポストプロセッシング手法を提案する。
非条件相関を任意のぼかしモードに適応させるため、ゼロショットのぼかしカーネル推定機構とオートスケールの denoise ガイダンス戦略を導入する。
論文 参考訳(メタデータ) (2024-10-08T08:38:23Z) - Inferring Thunderstorm Occurrence from Vertical Profiles of Convection-Permitting Simulations: Physical Insights from a Physical Deep Learning Model [0.0]
雷雨は激しい降水量、干ばつ、雷、強い風のために、社会と経済に大きな影響を及ぼす。
我々は,10の大気変数の垂直プロファイルから雷雨の発生確率を直接推定する深層ニューラルネットワークSALAMA 1Dを開発した。
SALAMA 1Dは、中央ヨーロッパで雷観測を基礎として訓練されている。
論文 参考訳(メタデータ) (2024-09-30T08:40:28Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
都市フロー予測は、バス、タクシー、ライド駆動モデルといった交通サービスのスループットを見積もる、微妙な時間的モデリングである。
最近の予測解は、物理学誘導機械学習(PGML)の概念による改善をもたらす。
我々は、PN(atized Physics-guided Network)を開発し、P-GASR(Physical-guided Active Sample Reweighting)を提案する。
論文 参考訳(メタデータ) (2024-07-18T15:44:23Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
気象予報に拡散モデル(DM)を適用した新しい手法を提案する。
提案手法は,同一のモデリングフレームワークを用いて,直接予測と反復予測の両方を実現できる。
我々のモデルの柔軟性と制御性は、一般の気象コミュニティにとってより信頼性の高いDLシステムに力を与えます。
論文 参考訳(メタデータ) (2024-02-06T21:28:42Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
本研究では,空間的不一致に対するレジリエンスを示す頑健な降水予測モデルを構築した。
提案手法は,textit4cast'23コンペティションの移行学習リーダーボードにおいて,textit1位を確保したモデルにおいて,予測精度が大幅に向上した。
論文 参考訳(メタデータ) (2023-11-30T08:22:08Z) - Self-Supervised Pre-Training for Precipitation Post-Processor [1.5553847214012175]
数値気象予測(NWP)モデルのための深層学習に基づく降水ポストプロセッサを提案する。
地域NWPデータセットの降水補正実験は,提案手法が他の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-10-31T05:13:10Z) - PostRainBench: A comprehensive benchmark and a new model for precipitation forecasting [14.855615256498]
数値気象予報(NWP)の事後処理に基づく降水予測に着目する。
我々は,包括的マルチ変数NWP後処理ベンチマークである textbfPostRainBench と,シンプルで効果的なChannel Attention Enhanced Multi-task Learning フレームワークである textbfCAMT を紹介する。
我々のモデルは,大雨条件下でNWPアプローチより優れた深層学習に基づく最初の手法である。
論文 参考訳(メタデータ) (2023-10-04T09:27:39Z) - SEEDS: Emulation of Weather Forecast Ensembles with Diffusion Models [13.331224394143117]
不確かさの定量化は意思決定に不可欠である。
天気予報の不確実性を表す主要なアプローチは、予測の集合を生成することです。
本稿では,これらの予測を歴史的データから学習した深部生成拡散モデルを用いてエミュレートし,計算コストを補正することを提案する。
論文 参考訳(メタデータ) (2023-06-24T22:00:06Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
確率的時系列予測は、その歴史に基づいて将来の分布を推定する。
本稿では,非線形エミッションモデルと遷移モデルとをネットワークによってパラメータ化した,確率的時系列予測のための深部状態空間モデルを提案する。
実験では,我々のモデルが正確かつ鋭い確率予測を生成することを示す。
論文 参考訳(メタデータ) (2021-01-31T06:49:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。