Efficient Depth Estimation for Unstable Stereo Camera Systems on AR Glasses
- URL: http://arxiv.org/abs/2411.10013v1
- Date: Fri, 15 Nov 2024 07:43:45 GMT
- Title: Efficient Depth Estimation for Unstable Stereo Camera Systems on AR Glasses
- Authors: Yongfan Liu, Hyoukjun Kwon,
- Abstract summary: We develop hardware-friendly alternatives to the costly cost volume and preprocessing.
For online stereo rectification (preprocessing), we introduce homograhy matrix prediction network with a rectification positional encoding (RPE)
Our MultiHeadDepth, which includes optimized cost volume, provides 11.8-30.3% improvements in accuracy and 22.9-25.2% reduction in latency.
Our HomoDepth, which includes optimized preprocessing (Homograhpy + RPE), can process unrectified images and reduce the end-to-end latency by 44.5%.
- Score: 1.086544864007391
- License:
- Abstract: Stereo depth estimation is a fundamental component in augmented reality (AR) applications. Although AR applications require very low latency for their real-time applications, traditional depth estimation models often rely on time-consuming preprocessing steps such as rectification to achieve high accuracy. Also, non standard ML operator based algorithms such as cost volume also require significant latency, which is aggravated on compute resource-constrained mobile platforms. Therefore, we develop hardware-friendly alternatives to the costly cost volume and preprocessing and design two new models based on them, MultiHeadDepth and HomoDepth. Our approaches for cost volume is replacing it with a new group-pointwise convolution-based operator and approximation of consine similarity based on layernorm and dot product. For online stereo rectification (preprocessing), we introduce homograhy matrix prediction network with a rectification positional encoding (RPE), which delivers both low latency and robustness to unrectified images, which eliminates the needs for preprocessing. Our MultiHeadDepth, which includes optimized cost volume, provides 11.8-30.3% improvements in accuracy and 22.9-25.2% reduction in latency compared to a state-of-the-art depth estimation model for AR glasses from industry. Our HomoDepth, which includes optimized preprocessing (Homograhpy + RPE) upon MultiHeadDepth, can process unrectified images and reduce the end-to-end latency by 44.5%. We adopt a multi-task learning framework to handle misaligned stereo inputs on HomoDepth, which reduces theAbsRel error by 10.0-24.3%. The results demonstrate the efficacy of our approaches in achieving both high model performance with low latency, which makes a step forward toward practical depth estimation on future AR devices.
Related papers
- ALOcc: Adaptive Lifting-based 3D Semantic Occupancy and Cost Volume-based Flow Prediction [89.89610257714006]
Existing methods prioritize higher accuracy to cater to the demands of these tasks.
We introduce a series of targeted improvements for 3D semantic occupancy prediction and flow estimation.
Our purelytemporalal architecture framework, named ALOcc, achieves an optimal tradeoff between speed and accuracy.
arXiv Detail & Related papers (2024-11-12T11:32:56Z) - Joint Pruning and Channel-wise Mixed-Precision Quantization for Efficient Deep Neural Networks [10.229120811024162]
deep neural networks (DNNs) pose significant challenges to their deployment on edge devices.
Common approaches to address this issue are pruning and mixed-precision quantization.
We propose a novel methodology to apply them jointly via a lightweight gradient-based search.
arXiv Detail & Related papers (2024-07-01T08:07:02Z) - Taming 3DGS: High-Quality Radiance Fields with Limited Resources [50.92437599516609]
3D Gaussian Splatting (3DGS) has transformed novel-view synthesis with its fast, interpretable, and high-fidelity rendering.
We tackle the challenges of training and rendering 3DGS models on a budget.
We derive faster, numerically equivalent solutions for gradient computation and attribute updates.
arXiv Detail & Related papers (2024-06-21T20:44:23Z) - Surrogate Lagrangian Relaxation: A Path To Retrain-free Deep Neural
Network Pruning [9.33753001494221]
Network pruning is a widely used technique to reduce computation cost and model size for deep neural networks.
In this paper, we develop a systematic weight-pruning optimization approach based on Surrogate Lagrangian relaxation.
arXiv Detail & Related papers (2023-04-08T22:48:30Z) - LiteDepth: Digging into Fast and Accurate Depth Estimation on Mobile
Devices [45.84356762066717]
We develop an end-to-end learning-based model with a tiny weight size (1.4MB) and a short inference time (27FPS on Raspberry Pi 4.
We propose a simple yet effective data augmentation strategy, called R2 crop, to boost the model performance.
Notably, our solution named LiteDepth ranks 2nd in the MAI&AIM2022 Monocular Depth Estimation Challenge, with a si-RMSE of 0.311, an RMSE of 3.79, and the inference time is 37$ms$ tested on the Raspberry Pi 4.
arXiv Detail & Related papers (2022-09-02T11:38:28Z) - Learning to Fit Morphable Models [12.469605679847085]
We build upon recent advances in learned optimization and propose an update rule inspired by the classic Levenberg-Marquardt algorithm.
We show the effectiveness of the proposed neural on the problems of 3D body surface estimation from a head-mounted device and face fitting from 2D landmarks.
arXiv Detail & Related papers (2021-11-29T18:59:53Z) - FasterPose: A Faster Simple Baseline for Human Pose Estimation [65.8413964785972]
We propose a design paradigm for cost-effective network with LR representation for efficient pose estimation, named FasterPose.
We study the training behavior of FasterPose, and formulate a novel regressive cross-entropy (RCE) loss function for accelerating the convergence.
Compared with the previously dominant network of pose estimation, our method reduces 58% of the FLOPs and simultaneously gains 1.3% improvement of accuracy.
arXiv Detail & Related papers (2021-07-07T13:39:08Z) - SADet: Learning An Efficient and Accurate Pedestrian Detector [68.66857832440897]
This paper proposes a series of systematic optimization strategies for the detection pipeline of one-stage detector.
It forms a single shot anchor-based detector (SADet) for efficient and accurate pedestrian detection.
Though structurally simple, it presents state-of-the-art result and real-time speed of $20$ FPS for VGA-resolution images.
arXiv Detail & Related papers (2020-07-26T12:32:38Z) - APQ: Joint Search for Network Architecture, Pruning and Quantization
Policy [49.3037538647714]
We present APQ for efficient deep learning inference on resource-constrained hardware.
Unlike previous methods that separately search the neural architecture, pruning policy, and quantization policy, we optimize them in a joint manner.
With the same accuracy, APQ reduces the latency/energy by 2x/1.3x over MobileNetV2+HAQ.
arXiv Detail & Related papers (2020-06-15T16:09:17Z) - A Privacy-Preserving-Oriented DNN Pruning and Mobile Acceleration
Framework [56.57225686288006]
Weight pruning of deep neural networks (DNNs) has been proposed to satisfy the limited storage and computing capability of mobile edge devices.
Previous pruning methods mainly focus on reducing the model size and/or improving performance without considering the privacy of user data.
We propose a privacy-preserving-oriented pruning and mobile acceleration framework that does not require the private training dataset.
arXiv Detail & Related papers (2020-03-13T23:52:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.