Efficient Density Control for 3D Gaussian Splatting
- URL: http://arxiv.org/abs/2411.10133v3
- Date: Tue, 11 Mar 2025 07:14:43 GMT
- Title: Efficient Density Control for 3D Gaussian Splatting
- Authors: Xiaobin Deng, Changyu Diao, Min Li, Ruohan Yu, Duanqing Xu,
- Abstract summary: 3D Gaussian Splatting (3DGS) has demonstrated outstanding performance in novel view synthesis.<n>We propose two key innovations: (1) Long-Axis Split, which precisely controls the position, shape, and opacity of child Gaussians; and (2) Recovery-Aware Pruning, which leverages differences in recovery speed after resetting opacity to prune overfitted Gaussians.
- Score: 3.6379656024631215
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D Gaussian Splatting (3DGS) has demonstrated outstanding performance in novel view synthesis, achieving a balance between rendering quality and real-time performance. 3DGS employs Adaptive Density Control (ADC) to increase the number of Gaussians. However, the clone and split operations within ADC are not sufficiently efficient, impacting optimization speed and detail recovery. Additionally, overfitted Gaussians that affect rendering quality may exist, and the original ADC is unable to remove them. To address these issues, we propose two key innovations: (1) Long-Axis Split, which precisely controls the position, shape, and opacity of child Gaussians to minimize the difference before and after splitting. (2) Recovery-Aware Pruning, which leverages differences in recovery speed after resetting opacity to prune overfitted Gaussians, thereby improving generalization performance. Experimental results show that our method significantly enhances rendering quality. Code is available at https://github.com/XiaoBin2001/EDC.
Related papers
- Second-order Optimization of Gaussian Splats with Importance Sampling [51.95046424364725]
3D Gaussian Splatting (3DGS) is widely used for novel view rendering due to its high quality and fast inference time.
We propose a novel second-order optimization strategy based on Levenberg-Marquardt (LM) and Conjugate Gradient (CG)
Our method achieves a $3times$ speedup over standard LM and outperforms Adam by $6times$ when the Gaussian count is low.
arXiv Detail & Related papers (2025-04-17T12:52:08Z) - ProtoGS: Efficient and High-Quality Rendering with 3D Gaussian Prototypes [81.48624894781257]
3D Gaussian Splatting (3DGS) has made significant strides in novel view synthesis but is limited by the substantial number of Gaussian primitives required.
Recent methods address this issue by compressing the storage size of densified Gaussians, yet fail to preserve rendering quality and efficiency.
We propose ProtoGS to learn Gaussian prototypes to represent Gaussian primitives, significantly reducing the total Gaussian amount without sacrificing visual quality.
arXiv Detail & Related papers (2025-03-21T18:55:14Z) - Improving Adaptive Density Control for 3D Gaussian Splatting [3.2248805768155835]
3D Gaussian Splatting is one of the most influential works in the past year.
It faces challenges to properly manage the number of Gaussian primitives that are used during scene reconstruction.
We propose three new improvements to the adaptive density control mechanism.
arXiv Detail & Related papers (2025-03-18T14:09:10Z) - Mini-Splatting2: Building 360 Scenes within Minutes via Aggressive Gaussian Densification [4.733612131945549]
Mini-Splatting2 achieves a balanced trade-off among optimization time, the number of Gaussians, and rendering quality.
Our work sets the stage for more efficient, high-quality 3D scene modeling in real-world applications.
arXiv Detail & Related papers (2024-11-19T11:47:40Z) - 3DGS-LM: Faster Gaussian-Splatting Optimization with Levenberg-Marquardt [65.25603275491544]
We present 3DGS-LM, a new method that accelerates the reconstruction of 3D Gaussian Splatting (3DGS)
Our method is 30% faster than the original 3DGS while obtaining the same reconstruction quality optimization.
arXiv Detail & Related papers (2024-09-19T16:31:44Z) - AdR-Gaussian: Accelerating Gaussian Splatting with Adaptive Radius [38.774337140911044]
3D Gaussian Splatting (3DGS) is a recent explicit 3D representation that has achieved high-quality reconstruction and real-time rendering of complex scenes.
We propose AdR-Gaussian, which moves part of serial culling in Render stage into the earlier Preprocess stage to enable parallel culling.
Our contributions are threefold, achieving a rendering speed of 310% while maintaining equivalent or even better quality than the state-of-the-art.
arXiv Detail & Related papers (2024-09-13T09:32:38Z) - RaDe-GS: Rasterizing Depth in Gaussian Splatting [32.38730602146176]
Gaussian Splatting (GS) has proven to be highly effective in novel view synthesis, achieving high-quality and real-time rendering.
Our work introduces a Chamfer distance error comparable to NeuraLangelo on the DTU dataset and maintains similar computational efficiency as the original 3D GS methods.
arXiv Detail & Related papers (2024-06-03T15:56:58Z) - LP-3DGS: Learning to Prune 3D Gaussian Splatting [71.97762528812187]
We propose learning-to-prune 3DGS, where a trainable binary mask is applied to the importance score that can find optimal pruning ratio automatically.
Experiments have shown that LP-3DGS consistently produces a good balance that is both efficient and high quality.
arXiv Detail & Related papers (2024-05-29T05:58:34Z) - CompGS: Efficient 3D Scene Representation via Compressed Gaussian Splatting [68.94594215660473]
We propose an efficient 3D scene representation, named Compressed Gaussian Splatting (CompGS)
We exploit a small set of anchor primitives for prediction, allowing the majority of primitives to be encapsulated into highly compact residual forms.
Experimental results show that the proposed CompGS significantly outperforms existing methods, achieving superior compactness in 3D scene representation without compromising model accuracy and rendering quality.
arXiv Detail & Related papers (2024-04-15T04:50:39Z) - GaussianPro: 3D Gaussian Splatting with Progressive Propagation [49.918797726059545]
3DGS relies heavily on the point cloud produced by Structure-from-Motion (SfM) techniques.
We propose a novel method that applies a progressive propagation strategy to guide the densification of the 3D Gaussians.
Our method significantly surpasses 3DGS on the dataset, exhibiting an improvement of 1.15dB in terms of PSNR.
arXiv Detail & Related papers (2024-02-22T16:00:20Z) - GES: Generalized Exponential Splatting for Efficient Radiance Field Rendering [112.16239342037714]
GES (Generalized Exponential Splatting) is a novel representation that employs Generalized Exponential Function (GEF) to model 3D scenes.
With the aid of a frequency-modulated loss, GES achieves competitive performance in novel-view synthesis benchmarks.
arXiv Detail & Related papers (2024-02-15T17:32:50Z) - StopThePop: Sorted Gaussian Splatting for View-Consistent Real-time Rendering [42.91830228828405]
We present a novel hierarchicalization approach that culls splats with minimal processing overhead.
Our approach is only 4% slower on average than the original Gaussian Splatting.
rendering performance is nearly doubled, making our approach 1.6x faster than the original Gaussian Splatting.
arXiv Detail & Related papers (2024-02-01T11:46:44Z) - HiFi4G: High-Fidelity Human Performance Rendering via Compact Gaussian
Splatting [48.59338619051709]
HiFi4G is an explicit and compact Gaussian-based approach for high-fidelity human performance rendering from dense footage.
It achieves a substantial compression rate of approximately 25 times, with less than 2MB of storage per frame.
arXiv Detail & Related papers (2023-12-06T12:36:53Z) - HumanGaussian: Text-Driven 3D Human Generation with Gaussian Splatting [113.37908093915837]
Existing methods optimize 3D representations like mesh or neural fields via score distillation sampling (SDS), which suffers from inadequate fine details or excessive training time.
In this paper, we propose an efficient yet effective framework, HumanGaussian, that generates high-quality 3D humans with fine-grained geometry and realistic appearance.
arXiv Detail & Related papers (2023-11-28T18:59:58Z) - GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting [51.96353586773191]
We introduce textbfGS-SLAM that first utilizes 3D Gaussian representation in the Simultaneous Localization and Mapping system.
Our method utilizes a real-time differentiable splatting rendering pipeline that offers significant speedup to map optimization and RGB-D rendering.
Our method achieves competitive performance compared with existing state-of-the-art real-time methods on the Replica, TUM-RGBD datasets.
arXiv Detail & Related papers (2023-11-20T12:08:23Z) - DreamGaussian: Generative Gaussian Splatting for Efficient 3D Content Creation [55.661467968178066]
We propose DreamGaussian, a novel 3D content generation framework that achieves both efficiency and quality simultaneously.
Our key insight is to design a generative 3D Gaussian Splatting model with companioned mesh extraction and texture refinement in UV space.
In contrast to the occupancy pruning used in Neural Radiance Fields, we demonstrate that the progressive densification of 3D Gaussians converges significantly faster for 3D generative tasks.
arXiv Detail & Related papers (2023-09-28T17:55:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.