Causal Time-Series Synchronization for Multi-Dimensional Forecasting
- URL: http://arxiv.org/abs/2411.10152v1
- Date: Fri, 15 Nov 2024 12:50:57 GMT
- Title: Causal Time-Series Synchronization for Multi-Dimensional Forecasting
- Authors: Michael Mayr, Georgios C. Chasparis, Josef Küng,
- Abstract summary: The process industry's high expectations for Digital Twins require modeling approaches that can generalize across tasks and diverse domains.
Our approach focuses on: (i) identifying highly lagged causal relationships using data-driven methods, (ii) synchronizing cause-effect pairs to generate training samples for channel-dependent pre-training, and (iii) evaluating the effectiveness of this approach in channel-dependent forecasting.
- Score: 1.1060425537315088
- License:
- Abstract: The process industry's high expectations for Digital Twins require modeling approaches that can generalize across tasks and diverse domains with potentially different data dimensions and distributional shifts i.e., Foundational Models. Despite success in natural language processing and computer vision, transfer learning with (self-) supervised signals for pre-training general-purpose models is largely unexplored in the context of Digital Twins in the process industry due to challenges posed by multi-dimensional time-series data, lagged cause-effect dependencies, complex causal structures, and varying number of (exogenous) variables. We propose a novel channel-dependent pre-training strategy that leverages synchronized cause-effect pairs to overcome these challenges by breaking down the multi-dimensional time-series data into pairs of cause-effect variables. Our approach focuses on: (i) identifying highly lagged causal relationships using data-driven methods, (ii) synchronizing cause-effect pairs to generate training samples for channel-dependent pre-training, and (iii) evaluating the effectiveness of this approach in channel-dependent forecasting. Our experimental results demonstrate significant improvements in forecasting accuracy and generalization capability compared to traditional training methods.
Related papers
- Transforming Multidimensional Time Series into Interpretable Event Sequences for Advanced Data Mining [5.2863523790908955]
This paper introduces a novel proposed representation model designed to address the limitations of traditional methods in multidimensional time series (MTS) analysis.
The proposed framework has significant potential for applications across various fields, including services for monitoring and optimizing IT infrastructure, medical diagnosis through continuous patient monitoring, trend analysis, and internet businesses for tracking user behavior and forecasting.
arXiv Detail & Related papers (2024-09-22T06:27:07Z) - Learning Divergence Fields for Shift-Robust Graph Representations [73.11818515795761]
In this work, we propose a geometric diffusion model with learnable divergence fields for the challenging problem with interdependent data.
We derive a new learning objective through causal inference, which can guide the model to learn generalizable patterns of interdependence that are insensitive across domains.
arXiv Detail & Related papers (2024-06-07T14:29:21Z) - Revitalizing Multivariate Time Series Forecasting: Learnable Decomposition with Inter-Series Dependencies and Intra-Series Variations Modeling [14.170879566023098]
We introduce a learnable decomposition strategy to capture dynamic trend information more reasonably.
We also propose a dual attention module tailored to capture inter-series dependencies and intra-series variations simultaneously.
arXiv Detail & Related papers (2024-02-20T03:45:59Z) - Hierarchical Joint Graph Learning and Multivariate Time Series
Forecasting [0.16492989697868887]
We introduce a method of representing multivariate signals as nodes in a graph with edges indicating interdependency between them.
We leverage graph neural networks (GNN) and attention mechanisms to efficiently learn the underlying relationships within the time series data.
The effectiveness of our proposed model is evaluated across various real-world benchmark datasets designed for long-term forecasting tasks.
arXiv Detail & Related papers (2023-11-21T14:24:21Z) - UniTime: A Language-Empowered Unified Model for Cross-Domain Time Series
Forecasting [59.11817101030137]
This research advocates for a unified model paradigm that transcends domain boundaries.
Learning an effective cross-domain model presents the following challenges.
We propose UniTime for effective cross-domain time series learning.
arXiv Detail & Related papers (2023-10-15T06:30:22Z) - Towards Causal Foundation Model: on Duality between Causal Inference and Attention [18.046388712804042]
We take a first step towards building causally-aware foundation models for treatment effect estimations.
We propose a novel, theoretically justified method called Causal Inference with Attention (CInA)
arXiv Detail & Related papers (2023-10-01T22:28:34Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
federated learning has emerged as a promising approach for training a global model using data from multiple organizations without leaking their raw data.
We propose a general framework to solve the above two challenges simultaneously.
We provide comprehensive theoretical analysis including robustness analysis, convergence analysis, and generalization ability.
arXiv Detail & Related papers (2022-04-16T08:08:29Z) - PIETS: Parallelised Irregularity Encoders for Forecasting with
Heterogeneous Time-Series [5.911865723926626]
Heterogeneity and irregularity of multi-source data sets present a significant challenge to time-series analysis.
In this work, we design a novel architecture, PIETS, to model heterogeneous time-series.
We show that PIETS is able to effectively model heterogeneous temporal data and outperforms other state-of-the-art approaches in the prediction task.
arXiv Detail & Related papers (2021-09-30T20:01:19Z) - A Multi-Channel Neural Graphical Event Model with Negative Evidence [76.51278722190607]
Event datasets are sequences of events of various types occurring irregularly over the time-line.
We propose a non-parametric deep neural network approach in order to estimate the underlying intensity functions.
arXiv Detail & Related papers (2020-02-21T23:10:50Z) - Transformer Hawkes Process [79.16290557505211]
We propose a Transformer Hawkes Process (THP) model, which leverages the self-attention mechanism to capture long-term dependencies.
THP outperforms existing models in terms of both likelihood and event prediction accuracy by a notable margin.
We provide a concrete example, where THP achieves improved prediction performance for learning multiple point processes when incorporating their relational information.
arXiv Detail & Related papers (2020-02-21T13:48:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.