論文の概要: On the Effect of Contextual Information on Human Delegation Behavior in
Human-AI collaboration
- arxiv url: http://arxiv.org/abs/2401.04729v1
- Date: Tue, 9 Jan 2024 18:59:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-10 15:01:42.929602
- Title: On the Effect of Contextual Information on Human Delegation Behavior in
Human-AI collaboration
- Title(参考訳): 人間とAIの協調行動における文脈情報の影響について
- Authors: Philipp Spitzer and Joshua Holstein and Patrick Hemmer and Michael
V\"ossing and Niklas K\"uhl and Dominik Martin and Gerhard Satzger
- Abstract要約: 我々は、AIにインスタンスを委譲するために、人間の意思決定に文脈情報を提供することの効果について検討する。
参加者にコンテキスト情報を提供することで,人間-AIチームのパフォーマンスが大幅に向上することがわかった。
本研究は,人間代表団における人間とAIの相互作用の理解を深め,より効果的な協調システムを設計するための実用的な洞察を提供する。
- 参考スコア(独自算出の注目度): 3.9253315480927964
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The constantly increasing capabilities of artificial intelligence (AI) open
new possibilities for human-AI collaboration. One promising approach to
leverage existing complementary capabilities is allowing humans to delegate
individual instances to the AI. However, enabling humans to delegate instances
effectively requires them to assess both their own and the AI's capabilities in
the context of the given task. In this work, we explore the effects of
providing contextual information on human decisions to delegate instances to an
AI. We find that providing participants with contextual information
significantly improves the human-AI team performance. Additionally, we show
that the delegation behavior changes significantly when participants receive
varying types of contextual information. Overall, this research advances the
understanding of human-AI interaction in human delegation and provides
actionable insights for designing more effective collaborative systems.
- Abstract(参考訳): 人工知能(AI)の絶えず増加する能力は、人間とAIのコラボレーションに新たな可能性を開く。
既存の補完機能を活用するための有望なアプローチのひとつは、AIに個々のインスタンスを委譲できるようにすることだ。
しかしながら、人間がインスタンスを委譲できるようにするためには、与えられたタスクのコンテキストにおいて、自分自身とAIの能力の両方を評価する必要がある。
本稿では,aiにインスタンスを委譲するために,人間の意思決定に文脈情報を提供することの効果について検討する。
参加者にコンテキスト情報を提供することで,人間-AIチームのパフォーマンスが大幅に向上することがわかった。
また,参加者が様々な文脈情報を受け取ると,代表行動が大きく変化することを示した。
本研究は,人間の代表団における人間とAIの相互作用の理解を深め,より効果的な協調システムを設計するための実用的な洞察を提供する。
関連論文リスト
- Aligning Generalisation Between Humans and Machines [74.120848518198]
近年のAIの進歩は、科学的発見と意思決定支援において人間を支援できる技術をもたらしたが、民主主義と個人を妨害する可能性がある。
AIの責任ある使用は、ますます人間とAIのチームの必要性を示している。
これらの相互作用の重要かつしばしば見落とされがちな側面は、人間と機械が一般化する異なる方法である。
論文 参考訳(メタデータ) (2024-11-23T18:36:07Z) - Let people fail! Exploring the influence of explainable virtual and robotic agents in learning-by-doing tasks [45.23431596135002]
本研究は,古典的対パートナー意識による説明が学習作業中の人間の行動とパフォーマンスに与える影響を比較検討した。
その結果, パートナー意識による説明は, 関係する人工エージェントの種類によって, 参加者に異なる影響を及ぼした。
論文 参考訳(メタデータ) (2024-11-15T13:22:04Z) - Unexploited Information Value in Human-AI Collaboration [23.353778024330165]
ヒューマンAIチームのパフォーマンスを改善する方法は、各エージェントがどのような情報や戦略を採用しているかを知らなければ、しばしば明確ではない。
本稿では,人間とAIの協調関係を分析するための統計的決定理論に基づくモデルを提案する。
論文 参考訳(メタデータ) (2024-11-03T01:34:45Z) - Measuring Human Contribution in AI-Assisted Content Generation [68.03658922067487]
本研究は,AIによるコンテンツ生成における人間の貢献度を測定する研究課題を提起する。
人間の入力とAI支援出力の自己情報に対する相互情報を計算することにより、コンテンツ生成における人間の比例情報貢献を定量化する。
論文 参考訳(メタデータ) (2024-08-27T05:56:04Z) - Towards Human-AI Deliberation: Design and Evaluation of LLM-Empowered Deliberative AI for AI-Assisted Decision-Making [47.33241893184721]
AIによる意思決定において、人間はしばしばAIの提案を受動的にレビューし、それを受け入れるか拒否するかを決定する。
意思決定における人間-AIの意見の対立に関する議論と人間のリフレクションを促進する新しい枠組みであるHuman-AI Deliberationを提案する。
人間の熟考の理論に基づいて、この枠組みは人間とAIを次元レベルの意見の引用、熟考的議論、意思決定の更新に携わる。
論文 参考訳(メタデータ) (2024-03-25T14:34:06Z) - Human-AI collaboration is not very collaborative yet: A taxonomy of interaction patterns in AI-assisted decision making from a systematic review [6.013543974938446]
意思決定支援システムにおける人工知能の活用は、技術的進歩に不相応に焦点を合わせてきた。
人間中心の視点は、既存のプロセスとのシームレスな統合のためにAIソリューションを設計することで、この懸念を緩和しようとする。
論文 参考訳(メタデータ) (2023-10-30T17:46:38Z) - Human-AI Coevolution [48.74579595505374]
Coevolution AIは、人間とAIアルゴリズムが相互に連続的に影響を及ぼすプロセスである。
本稿では,AIと複雑性科学の交点における新たな研究分野の基盤として,Coevolution AIを紹介した。
論文 参考訳(メタデータ) (2023-06-23T18:10:54Z) - Improving Grounded Language Understanding in a Collaborative Environment
by Interacting with Agents Through Help Feedback [42.19685958922537]
我々は、人間とAIのコラボレーションは対話的であり、人間がAIエージェントの作業を監視し、エージェントが理解し活用できるフィードバックを提供するべきだと論じている。
本研究では, IGLUコンペティションによって定義された課題である, マイニングクラフトのような世界における対話型言語理解タスクを用いて, これらの方向を探索する。
論文 参考訳(メタデータ) (2023-04-21T05:37:59Z) - Human-AI Collaboration: The Effect of AI Delegation on Human Task
Performance and Task Satisfaction [0.0]
タスク性能とタスク満足度はAIデリゲートによって向上することを示す。
我々は、これらの改善の基盤となるメカニズムとして、人間による自己効力の増大を見いだした。
我々の発見は、AIモデルがより多くの管理責任を引き継ぐことが、人間とAIのコラボレーションの効果的な形態であることを示す最初の証拠を提供する。
論文 参考訳(メタデータ) (2023-03-16T11:02:46Z) - On the Effect of Information Asymmetry in Human-AI Teams [0.0]
我々は、人間とAIの相補的ポテンシャルの存在に焦点を当てる。
具体的には、情報非対称性を相補性ポテンシャルの必須源とみなす。
オンライン実験を行うことで、人間がそのような文脈情報を使ってAIの決定を調整できることを実証する。
論文 参考訳(メタデータ) (2022-05-03T13:02:50Z) - On some Foundational Aspects of Human-Centered Artificial Intelligence [52.03866242565846]
人間中心人工知能(Human Centered Artificial Intelligence)の意味については明確な定義はない。
本稿では,AIコンポーネントを備えた物理・ソフトウェア計算エージェントを指すHCAIエージェントについて紹介する。
HCAIエージェントの概念は、そのコンポーネントや機能とともに、人間中心のAIに関する技術的および非技術的議論を橋渡しする手段であると考えています。
論文 参考訳(メタデータ) (2021-12-29T09:58:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。