Artificial Intelligence in Pediatric Echocardiography: Exploring Challenges, Opportunities, and Clinical Applications with Explainable AI and Federated Learning
- URL: http://arxiv.org/abs/2411.10255v1
- Date: Fri, 15 Nov 2024 15:03:34 GMT
- Title: Artificial Intelligence in Pediatric Echocardiography: Exploring Challenges, Opportunities, and Clinical Applications with Explainable AI and Federated Learning
- Authors: Mohammed Yaseen Jabarulla, Theodor Uden, Thomas Jack, Philipp Beerbaum, Steffen Oeltze-Jafra,
- Abstract summary: This study offers a comprehensive overview of the limitations and opportunities of AI in pediatric echocardiography.
It emphasizes the synergistic workflow and role of XAI and FL, identifying research gaps, and exploring potential future developments.
Three relevant clinical use cases demonstrate the functionality of XAI and FL with a focus on (i) view recognition, (ii) disease classification, (iii) segmentation of cardiac structures, and (iv) quantitative assessment of cardiac function.
- Score: 0.9866581731906279
- License:
- Abstract: Pediatric heart diseases present a broad spectrum of congenital and acquired diseases. More complex congenital malformations require a differentiated and multimodal decision-making process, usually including echocardiography as a central imaging method. Artificial intelligence (AI) offers considerable promise for clinicians by facilitating automated interpretation of pediatric echocardiography data. However, adapting AI technologies for pediatric echocardiography analysis has challenges such as limited public data availability, data privacy, and AI model transparency. Recently, researchers have focused on disruptive technologies, such as federated learning (FL) and explainable AI (XAI), to improve automatic diagnostic and decision support workflows. This study offers a comprehensive overview of the limitations and opportunities of AI in pediatric echocardiography, emphasizing the synergistic workflow and role of XAI and FL, identifying research gaps, and exploring potential future developments. Additionally, three relevant clinical use cases demonstrate the functionality of XAI and FL with a focus on (i) view recognition, (ii) disease classification, (iii) segmentation of cardiac structures, and (iv) quantitative assessment of cardiac function.
Related papers
- Framework for developing and evaluating ethical collaboration between expert and machine [4.304304889487245]
Precision medicine is a promising approach for accessible disease diagnosis and personalized intervention planning.
By leveraging artificial intelligence (AI), precision medicine tailors diagnosis and treatment solutions to individual patients.
However, the adoption of AI in medical applications faces significant challenges.
This paper proposes a framework to develop and ethically evaluate expert-guided multi-modal AI.
arXiv Detail & Related papers (2024-11-17T06:49:38Z) - Clinical Evaluation of Medical Image Synthesis: A Case Study in Wireless Capsule Endoscopy [63.39037092484374]
This study focuses on the clinical evaluation of medical Synthetic Data Generation using Artificial Intelligence (AI) models.
The paper contributes by a) presenting a protocol for the systematic evaluation of synthetic images by medical experts and b) applying it to assess TIDE-II, a novel variational autoencoder-based model for high-resolution WCE image synthesis.
The results show that TIDE-II generates clinically relevant WCE images, helping to address data scarcity and enhance diagnostic tools.
arXiv Detail & Related papers (2024-10-31T19:48:50Z) - Artificial intelligence techniques in inherited retinal diseases: A review [19.107474958408847]
Inherited retinal diseases (IRDs) are a diverse group of genetic disorders that lead to progressive vision loss and are a major cause of blindness in working-age adults.
Recent advancements in artificial intelligence (AI) offer promising solutions to these challenges.
This review consolidates existing studies, identifies gaps, and provides an overview of AI's potential in diagnosing and managing IRDs.
arXiv Detail & Related papers (2024-10-10T03:14:51Z) - The Role of Explainable AI in Revolutionizing Human Health Monitoring [0.0]
Explainable AI (XAI) offers greater clarity and has the potential to significantly improve patient care.
This literature review focuses on chronic conditions such as Parkinson's, stroke, depression, cancer, heart disease, and Alzheimer's disease.
The article is concluded with a critical appraisal of the challenges and future research opportunities for XAI in human health monitoring.
arXiv Detail & Related papers (2024-09-11T15:31:40Z) - Breast Cancer Diagnosis: A Comprehensive Exploration of Explainable Artificial Intelligence (XAI) Techniques [38.321248253111776]
Article explores the application of Explainable Artificial Intelligence (XAI) techniques in the detection and diagnosis of breast cancer.
Aims to highlight the potential of XAI in bridging the gap between complex AI models and practical healthcare applications.
arXiv Detail & Related papers (2024-06-01T18:50:03Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
neurodegenerative diseases (NDs) traditionally require extensive healthcare resources and human effort for medical diagnosis and monitoring.
As a crucial disease-related motor symptom, human gait can be exploited to characterize different NDs.
The current advances in artificial intelligence (AI) models enable automatic gait analysis for NDs identification and classification.
arXiv Detail & Related papers (2024-05-21T06:44:40Z) - Enabling Collaborative Clinical Diagnosis of Infectious Keratitis by
Integrating Expert Knowledge and Interpretable Data-driven Intelligence [28.144658552047975]
This study investigates the performance, interpretability, and clinical utility of knowledge-guided diagnosis model (KGDM) in the diagnosis of infectious keratitis (IK)
The diagnostic odds ratios (DOR) of the interpreted AI-based biomarkers are effective, ranging from 3.011 to 35.233.
The participants with collaboration achieved a performance exceeding that of both humans and AI.
arXiv Detail & Related papers (2024-01-14T02:10:54Z) - DRAC: Diabetic Retinopathy Analysis Challenge with Ultra-Wide Optical
Coherence Tomography Angiography Images [51.27125547308154]
We organized a challenge named "DRAC - Diabetic Retinopathy Analysis Challenge" in conjunction with the 25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2022)
The challenge consists of three tasks: segmentation of DR lesions, image quality assessment and DR grading.
This paper presents a summary and analysis of the top-performing solutions and results for each task of the challenge.
arXiv Detail & Related papers (2023-04-05T12:04:55Z) - Factored Attention and Embedding for Unstructured-view Topic-related
Ultrasound Report Generation [70.7778938191405]
We propose a novel factored attention and embedding model (termed FAE-Gen) for the unstructured-view topic-related ultrasound report generation.
The proposed FAE-Gen mainly consists of two modules, i.e., view-guided factored attention and topic-oriented factored embedding, which capture the homogeneous and heterogeneous morphological characteristic across different views.
arXiv Detail & Related papers (2022-03-12T15:24:03Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
Clinical diagnosis, which aims to assign diagnosis codes for a patient based on the clinical note, plays an essential role in clinical decision-making.
We propose a novel framework to combine the inheritance-guided hierarchical assignment and co-occurrence graph propagation for clinical automatic diagnosis.
arXiv Detail & Related papers (2021-01-27T13:16:51Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
Clinical decision support using deep neural networks has become a topic of steadily growing interest.
clinicians are often hesitant to adopt the technology because its underlying decision-making process is considered to be intransparent and difficult to comprehend.
We propose a novel decision explanation scheme based on CycleGAN activation which generates high-quality visualizations of classifier decisions even in smaller data sets.
arXiv Detail & Related papers (2020-10-09T14:39:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.